Brownian motion in a growing population of ballistic particles

被引:0
|
作者
Pere, Nathaniel V. Mon [1 ]
de Buyl, Pierre [2 ,3 ]
de Buyl, Sophie [4 ,5 ]
机构
[1] Barts Canc Inst, Ctr Canc Genom & Computat Biol, Charterhouse Sq, London EC1M 6BQ, England
[2] Royal Meteorol Inst Belgium, Ave Circulaire 3, B-1180 Brussels, Belgium
[3] Katholieke Univ Leuven, Inst Theoret Phys, Celestijnenlaan 200d,Box 2415, B-3001 Leuven, Belgium
[4] Vrije Univ Brussel, Phys Dept, Appl Phys Res Grp, B-1050 Brussels, Belgium
[5] Univ Libre Bruxelles, Vrije Univ Brussel, Interuniv Inst Bioinformat Brussels, B-1050 Brussels, Belgium
关键词
COLLECTIVE CELL-MIGRATION;
D O I
10.1103/PhysRevE.105.034133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the motility of a growing population of cells in a idealized setting: We consider a system of hard disks in which new particles are added according to prescribed growth kinetics, thereby dynamically changing the number density. As a result, the expected Brownian motion of the hard disks is modified. We compute the density-dependent friction of the hard disks and insert it in an effective Langevin equation to describe the system, assuming that the intercollision time is smaller than the timescale of the growth. We find that the effective Langevin description captures the changes in motility, in agreement with the simulation results. Our framework can be extended to other systems in which the transport coefficient varies with time.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The motion of Brownian particles and sediment on an inclined plate
    Dahlkild, AA
    JOURNAL OF FLUID MECHANICS, 1997, 337 : 25 - 47
  • [42] Fractal Brownian Motion of Colloidal Particles in Plasma
    Koss, K. G.
    Lisina, I. I.
    Vasiliev, M. M.
    Alekseevskaya, A. A.
    Kononov, E. A.
    Petrov, O. F.
    PLASMA PHYSICS REPORTS, 2023, 49 (01) : 57 - 64
  • [43] Brownian motion of suspended particles in an anisotropic medium
    Y.F. Hsia
    N. Fang
    H.M. Widatallah
    D.M. Wu
    X.M. Lee
    J.R. Zhang
    Hyperfine Interactions, 2000, 126 : 401 - 406
  • [44] Genealogy of Extremal Particles of Branching Brownian Motion
    Arguin, L. -P.
    Bovier, A.
    Kistler, N.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (12) : 1647 - 1676
  • [45] BROWNIAN DIFFUSION OF PARTICLES AND EQUATIONS OF MOTION OF DISPERSIONS
    BUEVICH, YA
    ZUBAREV, AY
    COLLOID JOURNAL OF THE USSR, 1989, 51 (06): : 915 - 921
  • [46] Brownian motion from a deterministic system of particles
    Vincent Ardourel
    Synthese, 2022, 200
  • [47] Collective motion of Brownian particles with hydrodynamic interactions
    Erdmann, U
    Ebeling, W
    FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L145 - L154
  • [48] Condensation of SIP Particles and Sticky Brownian Motion
    Ayala, Mario
    Carinci, Gioia
    Redig, Frank
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (03)
  • [49] Brownian motion in granular gases of viscoelastic particles
    Bodrova, A. S.
    Brilliantov, N. V.
    Loskutov, A. Yu.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 109 (06) : 946 - 953
  • [50] Quantum transport in chaotic ballistic cavity: a Brownian-motion approach
    Souza, Carlos E. C.
    Macedo-Junior, A. F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (41)