Brownian motion in a growing population of ballistic particles

被引:0
|
作者
Pere, Nathaniel V. Mon [1 ]
de Buyl, Pierre [2 ,3 ]
de Buyl, Sophie [4 ,5 ]
机构
[1] Barts Canc Inst, Ctr Canc Genom & Computat Biol, Charterhouse Sq, London EC1M 6BQ, England
[2] Royal Meteorol Inst Belgium, Ave Circulaire 3, B-1180 Brussels, Belgium
[3] Katholieke Univ Leuven, Inst Theoret Phys, Celestijnenlaan 200d,Box 2415, B-3001 Leuven, Belgium
[4] Vrije Univ Brussel, Phys Dept, Appl Phys Res Grp, B-1050 Brussels, Belgium
[5] Univ Libre Bruxelles, Vrije Univ Brussel, Interuniv Inst Bioinformat Brussels, B-1050 Brussels, Belgium
关键词
COLLECTIVE CELL-MIGRATION;
D O I
10.1103/PhysRevE.105.034133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the motility of a growing population of cells in a idealized setting: We consider a system of hard disks in which new particles are added according to prescribed growth kinetics, thereby dynamically changing the number density. As a result, the expected Brownian motion of the hard disks is modified. We compute the density-dependent friction of the hard disks and insert it in an effective Langevin equation to describe the system, assuming that the intercollision time is smaller than the timescale of the growth. We find that the effective Langevin description captures the changes in motility, in agreement with the simulation results. Our framework can be extended to other systems in which the transport coefficient varies with time.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] ON THEORY OF COAGULATION OF NONINTERACTING PARTICLES IN BROWNIAN MOTION
    HIDY, GM
    JOURNAL OF COLLOID SCIENCE, 1965, 20 (02): : 123 - &
  • [32] Fractal Brownian Motion of Colloidal Particles in Plasma
    K. G. Koss
    I. I. Lisina
    M. M. Vasiliev
    A. A. Alekseevskaya
    E. A. Kononov
    O. F. Petrov
    Plasma Physics Reports, 2023, 49 : 57 - 64
  • [33] MOLECULAR THEORY OF BROWNIAN MOTION FOR SEVERAL PARTICLES
    DEUTCH, JM
    OPPENHEIM, I
    JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (08): : 3547 - +
  • [34] Investigation of apparent correlated motion of Brownian particles
    Durand, RV
    Franck, C
    PHYSICAL REVIEW E, 1997, 56 (02): : 1998 - 2011
  • [35] Brownian motion from a deterministic system of particles
    Ardourel, Vincent
    SYNTHESE, 2022, 200 (01)
  • [36] Dispersion of aerosol particles undergoing Brownian motion
    Alonso, M
    Endo, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 10745 - 10755
  • [37] Brownian motion in granular gases of viscoelastic particles
    A. S. Bodrova
    N. V. Brilliantov
    A. Yu. Loskutov
    Journal of Experimental and Theoretical Physics, 2009, 109 : 946 - 953
  • [38] Fractional Brownian motion of particles in capillary waves
    Schroder, E
    Levinsen, MT
    Alstrom, P
    PHYSICA A, 1997, 239 (1-3): : 314 - 321
  • [39] MOTION OF BROWNIAN PARTICLES IN A TILTED PERIODIC POTENTIAL
    MELNIKOV, VI
    JETP LETTERS, 1984, 40 (02) : 787 - 791
  • [40] Stochastic spacetime and Brownian motion of test particles
    Ford, LH
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (10) : 1753 - 1768