Sampling of Pareto-Optimal Trajectories using Progressive Objective Evaluation in Multi-Objective Motion Planning

被引:0
|
作者
Lee, Jeongseok [1 ]
Yi, Daqing [1 ]
Srinivasa, Siddhartha S. [1 ]
机构
[1] Univ Washington, Comp Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a Markov chain Monte Carlo (MCMC) method to solve multi-objective motion-planning problems. We formulate the problem of finding Pareto-optimal trajectories as a problem of sampling trajectories from a Pareto-optimal set. We define an implicit uniform distribution over the Pareto-frontier using a dominance function and then sample in the space of trajectories. The nature of MCMC guarantees the convergence to the Pareto-frontier, while the uniform distribution ensures the diversity of the trajectories. We also propose progressive objective evaluation to increase efficiency in problems with expensive-to-evaluate objective functions. This enables determination of dominance relationship between trajectories before they are entirely evaluated. We finally analyze the effectiveness of the framework and its applications in robotics.
引用
收藏
页码:5358 / 5365
页数:8
相关论文
共 50 条
  • [1] Distributional Pareto-Optimal Multi-Objective Reinforcement Learning
    Cai, Xin-Qiang
    Zhang, Pushi
    Zhao, Li
    Bian, Jiang
    Sugiyama, Masashi
    Llorens, Ashley J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Pareto-Optimal Multi-objective Inversion of Geophysical Data
    Sebastian Schnaidt
    Dennis Conway
    Lars Krieger
    Graham Heinson
    [J]. Pure and Applied Geophysics, 2018, 175 : 2221 - 2236
  • [3] Pareto-Optimal Multi-objective Inversion of Geophysical Data
    Schnaidt, Sebastian
    Conway, Dennis
    Krieger, Lars
    Heinson, Graham
    [J]. PURE AND APPLIED GEOPHYSICS, 2018, 175 (06) : 2221 - 2236
  • [4] Searching for robust Pareto-optimal solutions in multi-objective optimization
    Deb, K
    Gupta, H
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 150 - 164
  • [5] A multi-objective evolutionary approach to Pareto-optimal model trees
    Czajkowski, Marcin
    Kretowski, Marek
    [J]. SOFT COMPUTING, 2019, 23 (05) : 1423 - 1437
  • [6] A Pareto-optimal genetic algorithm for warehouse multi-objective optimization
    Poulos, PN
    Rigatos, GG
    Tzafestas, SG
    Koukos, AK
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (06) : 737 - 749
  • [7] Pareto-optimal solutions in fuzzy multi-objective linear programming
    Jimenez, Mariano
    Bilbao, Amelia
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (18) : 2714 - 2721
  • [8] A multi-objective evolutionary approach to Pareto-optimal model trees
    Marcin Czajkowski
    Marek Kretowski
    [J]. Soft Computing, 2019, 23 : 1423 - 1437
  • [9] Multi-objective Pareto-optimal control: an application to wastewater management
    Alvarez-Vazquez, L. J.
    Garcia-Chan, N.
    Martinez, A.
    Vazquez-Mendez, M. E.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (01) : 135 - 157
  • [10] A Multi-Objective Pareto-Optimal Genetic Algorithm for QoS Multicasting
    Rai, S. C.
    Misra, B. B.
    Nayak, A. K.
    Mall, R.
    Pradhan, S.
    [J]. 2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 1303 - +