A Multi-Objective Pareto-Optimal Genetic Algorithm for QoS Multicasting

被引:1
|
作者
Rai, S. C. [1 ]
Misra, B. B. [1 ]
Nayak, A. K. [1 ]
Mall, R. [2 ]
Pradhan, S. [3 ]
机构
[1] Silicon Inst Technol, Dept Comp Sci & Engn, Bhubaneswar, Orissa, India
[2] Indian Inst Technol, Dept Comp Sci & Engn, Kharagpur, W Bengal, India
[3] Utkal Univ, Dept Comp Sci & Applicat, Bhubaneswar 751004, Orissa, India
关键词
Objective; Genetic Algorithm; Quality of Service; Multicasting;
D O I
10.1109/IADCC.2009.4809204
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The increasing demand of real-time multimedia applications in wireless environment requires stringent Quality of Service (QoS) provisioning to the Mobile Hosts (MH). The scenario becomes more complex during group communication from single source to multiple destinations. Fulfilling users demand with respect to delay, jitter, available bandwidth, packet loss rate and cost associated with the communication needs Multi-Objective Optimization (MOO) with QoS satisfaction, is a NP-complete problem. In this paper we propose a multi-objective optimal algorithm to determine a min-cost multicast tree with end-to-end delay, jitter, packet loss rate and blocking probability constraints. The simulation result shows that the proposed algorithm satisfies QoS requirements (like high availability, good load balancing and fault-tolerance) made by the hosts in varying topology and bursty data traffic for multimedia communication networks. The performance of the algorithm for scalability is also highly encouraged.
引用
收藏
页码:1303 / +
页数:2
相关论文
共 50 条
  • [1] A Pareto-optimal genetic algorithm for warehouse multi-objective optimization
    Poulos, PN
    Rigatos, GG
    Tzafestas, SG
    Koukos, AK
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (06) : 737 - 749
  • [2] Distributional Pareto-Optimal Multi-Objective Reinforcement Learning
    Cai, Xin-Qiang
    Zhang, Pushi
    Zhao, Li
    Bian, Jiang
    Sugiyama, Masashi
    Llorens, Ashley J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Pareto-Optimal Multi-objective Inversion of Geophysical Data
    Sebastian Schnaidt
    Dennis Conway
    Lars Krieger
    Graham Heinson
    [J]. Pure and Applied Geophysics, 2018, 175 : 2221 - 2236
  • [4] Pareto-Optimal Multi-objective Inversion of Geophysical Data
    Schnaidt, Sebastian
    Conway, Dennis
    Krieger, Lars
    Heinson, Graham
    [J]. PURE AND APPLIED GEOPHYSICS, 2018, 175 (06) : 2221 - 2236
  • [5] Searching for robust Pareto-optimal solutions in multi-objective optimization
    Deb, K
    Gupta, H
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 150 - 164
  • [6] A multi-objective evolutionary approach to Pareto-optimal model trees
    Czajkowski, Marcin
    Kretowski, Marek
    [J]. SOFT COMPUTING, 2019, 23 (05) : 1423 - 1437
  • [7] A multi-objective evolutionary approach to Pareto-optimal model trees
    Marcin Czajkowski
    Marek Kretowski
    [J]. Soft Computing, 2019, 23 : 1423 - 1437
  • [8] Pareto-optimal solutions in fuzzy multi-objective linear programming
    Jimenez, Mariano
    Bilbao, Amelia
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (18) : 2714 - 2721
  • [9] Pareto-optimal solutions for multi-objective production scheduling problems
    Bagchi, TP
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 458 - 471
  • [10] Pareto-optimal solutions for multi-objective flexible linear programming
    Dubey, Dipti
    Mehra, Aparna
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (01) : 535 - 546