Convolutional deep denoising autoencoders for radio astronomical images

被引:21
|
作者
Gheller, C. [1 ]
Vazza, F. [1 ,2 ,3 ]
机构
[1] INAF, Ist Radio Astron, Via Gobetti 101, I-40121 Bologna, Italy
[2] Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
[3] Univ Bologna, Dipartimento Fis & Astron, Via Gobetti 92-3, I-40121 Bologna, Italy
关键词
methods: numerical; intergalactic medium; large-scale structure of Universe; 2 GALAXY CLUSTERS; MAGNETIC-FIELDS; CLASSIFICATION; ALGORITHM; EMISSION; IMPLEMENTATION; DECONVOLUTION; POPULATION; FILAMENTS; BARYONS;
D O I
10.1093/mnras/stab3044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations.
引用
收藏
页码:990 / 1009
页数:20
相关论文
共 50 条
  • [41] Evolving Deep Convolutional Variational Autoencoders for Image Classification
    Chen, Xiangru
    Sun, Yanan
    Zhang, Mengjie
    Peng, Dezhong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (05) : 815 - 829
  • [42] PredMaX: Predictive maintenance with explainable deep convolutional autoencoders
    Hajgato, Gergely
    Weber, Richard
    Szilagyi, Botond
    Tothpal, Balazs
    Gyires-Toth, Balint
    Hos, Csaba
    ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [43] DEEP CONVOLUTIONAL RECURRENT AUTOENCODERS FOR FLOW FIELD PREDICTION
    Bukka, Sandeep R.
    Magee, Allan Ross
    Jaiman, Rajeev K.
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 8, 2020,
  • [44] Compression of EMG Signals Using Deep Convolutional Autoencoders
    Dinashi, Kimia
    Ameri, Ali
    Akhaee, Mohammad Ali
    Englehart, Kevin
    Scheme, Erik
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 2888 - 2897
  • [45] Semantic Segmentation of Radio-Astronomical Images
    Pino, Carmelo
    Sortino, Renato
    Sciacca, Eva
    Riggi, Simone
    Spampinato, Concetto
    PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, 2021, 13055 : 393 - 403
  • [46] Denoising UWB Radar Data for Human Activity Recognition Using Convolutional Autoencoders
    Lafontaine, Virgile
    Bouchard, Kevin
    Maitre, Julien
    Gaboury, Sebastien
    IEEE ACCESS, 2023, 11 : 81298 - 81309
  • [47] 3D Shape Processing by Convolutional Denoising Autoencoders on Local Patches
    Sarkar, Kripasindhu
    Varanasi, Kiran
    Stricker, Didier
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1925 - 1934
  • [48] Cross-Technology Interference Mitigation Using Fully Convolutional Denoising Autoencoders
    Lin, Chi-Lun
    Lin, Kate Ching-Ju
    Lee, Chi-Cheng
    Tsao, Yu
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [49] Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders
    Alshathri, Samah Ibrahim
    Vincent, Desiree Juby
    Hari, V. S.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 1371 - 1386
  • [50] Ship Detection in SAR Images Using Convolutional Variational Autoencoders
    Ferreira, Nuno
    Silveira, Margarida
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2503 - 2506