Convolutional deep denoising autoencoders for radio astronomical images

被引:21
|
作者
Gheller, C. [1 ]
Vazza, F. [1 ,2 ,3 ]
机构
[1] INAF, Ist Radio Astron, Via Gobetti 101, I-40121 Bologna, Italy
[2] Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
[3] Univ Bologna, Dipartimento Fis & Astron, Via Gobetti 92-3, I-40121 Bologna, Italy
关键词
methods: numerical; intergalactic medium; large-scale structure of Universe; 2 GALAXY CLUSTERS; MAGNETIC-FIELDS; CLASSIFICATION; ALGORITHM; EMISSION; IMPLEMENTATION; DECONVOLUTION; POPULATION; FILAMENTS; BARYONS;
D O I
10.1093/mnras/stab3044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations.
引用
收藏
页码:990 / 1009
页数:20
相关论文
共 50 条
  • [21] Radio astronomical images object detection and segmentation: a benchmark on deep learning methods
    Renato Sortino
    Daniel Magro
    Giuseppe Fiameni
    Eva Sciacca
    Simone Riggi
    Andrea DeMarco
    Concetto Spampinato
    Andrew M. Hopkins
    Filomena Bufano
    Francesco Schillirò
    Cristobal Bordiu
    Carmelo Pino
    Experimental Astronomy, 2023, 56 : 293 - 331
  • [22] Perception Optimized Deep Denoising AutoEncoders for Speech Enhancement
    Shivakumar, Prashanth Gurunath
    Georgiou, Panayiotis
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 3743 - 3747
  • [23] UNSUPERVISED DEEP HASHING WITH STACKED CONVOLUTIONAL AUTOENCODERS
    En, Sovann
    Cremilleux, Bruno
    Jurie, Frederic
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3420 - 3424
  • [24] Adaptive deconvolution of radio astronomical images
    Cram, Lawrence
    Ye, Taisheny
    Australian Journal of Physics, 1995, 48 (01):
  • [25] Transfer learning for denoising the echolocation clicks of finless porpoise (Neophocaena phocaenoides sunameri) using deep convolutional autoencoders
    Yang, Wuyi
    Chang, Wenlei
    Song, Zhongchang
    Zhang, Yu
    Wang, Xianyan
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (02): : 1243 - 1250
  • [26] ADAPTIVE DECONVOLUTION OF ASTRONOMICAL RADIO IMAGES
    CRAM, L
    YE, TS
    AUSTRALIAN JOURNAL OF PHYSICS, 1995, 48 (01): : 113 - 124
  • [27] Deep Convolutional Denoising Autoencoders with Network Structure Optimization for the High-Fidelity Attenuation of Random GPR Noise
    Feng, Deshan
    Wang, Xiangyu
    Wang, Xun
    Ding, Siyuan
    Zhang, Hua
    REMOTE SENSING, 2021, 13 (09)
  • [28] Aircraft engine fault detection based on grouped convolutional denoising autoencoders
    Xuyun FU
    Hui LUO
    Shisheng ZHONG
    Lin LIN
    Chinese Journal of Aeronautics , 2019, (02) : 296 - 307
  • [29] Aircraft engine fault detection based on grouped convolutional denoising autoencoders
    Fu, Xuyun
    Luo, Hui
    Zhong, Shisheng
    Lin, Lin
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (02) : 296 - 307
  • [30] Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
    Chiang, Hsin-Tien
    Hsieh, Yi-Yen
    Fu, Szu-Wei
    Hung, Kuo-Hsuan
    Tsao, Yu
    Chien, Shao-Yi
    IEEE ACCESS, 2019, 7 : 60806 - 60813