Convolutional deep denoising autoencoders for radio astronomical images

被引:21
|
作者
Gheller, C. [1 ]
Vazza, F. [1 ,2 ,3 ]
机构
[1] INAF, Ist Radio Astron, Via Gobetti 101, I-40121 Bologna, Italy
[2] Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
[3] Univ Bologna, Dipartimento Fis & Astron, Via Gobetti 92-3, I-40121 Bologna, Italy
关键词
methods: numerical; intergalactic medium; large-scale structure of Universe; 2 GALAXY CLUSTERS; MAGNETIC-FIELDS; CLASSIFICATION; ALGORITHM; EMISSION; IMPLEMENTATION; DECONVOLUTION; POPULATION; FILAMENTS; BARYONS;
D O I
10.1093/mnras/stab3044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes, with the goal of detecting the faint, diffused radio sources predicted to characterize the radio cosmic web. In our application, denoising is intended to address both the reduction of random instrumental noise and the minimization of additional spurious artefacts like the sidelobes, resulting from the aperture synthesis technique. The effectiveness and the accuracy of the method are analysed for different kinds of corrupted input images, together with its computational performance. Specific attention has been devoted to create realistic mock observations for the training, exploiting the outcomes of cosmological numerical simulations, to generate images corresponding to LOFAR HBA 8 h observations at 150 MHz. Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity. The method can efficiently scale on large data sets, exploiting high-performance computing solutions, in a fully automated way (i.e. no human supervision is required after training). It can accurately perform image segmentation, identifying low brightness outskirts of diffused sources, proving to be a viable solution for detecting challenging extended objects hidden in noisy radio observations.
引用
收藏
页码:990 / 1009
页数:20
相关论文
共 50 条
  • [1] Deep Convolutional Autoencoders for Deblurring and Denoising Low-Resolution Images
    Jimenez, Michael Fernando Mendez
    DeGuchy, Omar
    Marcia, Roummel F.
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 549 - 553
  • [2] Medical image denoising using convolutional denoising autoencoders
    Gondara, Lovedeep
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 241 - 246
  • [3] Using AutoEncoders for Radio Signal Denoising
    Almazrouei, Ebtesam
    Gianini, Gabriele
    Mio, Corrado
    Almoosa, Nawaf
    Damiani, Ernesto
    Q2SWINET'19: PROCEEDINGS OF THE 15TH ACM INTERNATIONAL SYMPOSIUM ON QOS AND SECURITY FOR WIRELESS AND MOBILE NETWORKS, 2019, : 11 - 17
  • [4] Poisson Denoising for Astronomical Images
    Shamshad, Fahad
    Riaz, M. Mohsin
    Ghafoor, Abdul
    ADVANCES IN ASTRONOMY, 2018, 2018
  • [5] Sparse Convolutional Denoising Autoencoders for Genotype Imputation
    Chen, Junjie
    Shi, Xinghua
    GENES, 2019, 10 (09)
  • [6] ROTDR signal enhancement via deep convolutional denoising autoencoders trained with domain randomization
    Laarossi, I.
    Pardo, A.
    Conde, O. M.
    Quintela, M. A.
    Lopez-Higuera, J. M.
    SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019), 2019, 11199
  • [7] Multimodal Deep Denoising Convolutional Autoencoders for Pain Intensity Classification based on Physiological Signals
    Thiam, Patrick
    Kestler, Hans
    Schwenker, Friedhelm
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 289 - 296
  • [8] Deep Clustering with Convolutional Autoencoders
    Guo, Xifeng
    Liu, Xinwang
    Zhu, En
    Yin, Jianping
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 373 - 382
  • [9] Seismic noise suppression based on convolutional denoising autoencoders
    Song H.
    Gao Y.
    Chen W.
    Zhang X.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (06): : 1210 - 1219
  • [10] Convolutional adaptive denoising autoencoders for hierarchical feature extraction
    Qianjun Zhang
    Lei Zhang
    Frontiers of Computer Science, 2018, 12 : 1140 - 1148