Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability

被引:62
|
作者
Paolella, Andrea [1 ]
Zhu, Wen [1 ]
Bertoni, Giovanni [2 ,3 ]
Savoie, Sylvio [1 ]
Feng, Zimin [1 ]
Demers, Hendrix [1 ]
Gariepy, Vincent [1 ]
Girard, Gabriel [1 ]
Rivard, Etienne [1 ]
Delaporte, Nicolas [1 ]
Guerfi, Abdelbast [1 ]
Lorrmann, Henning [4 ]
George, Chandramohan [5 ]
Zaghib, Karim [1 ]
机构
[1] Hydro Quebec, Ctr Excellence Transportat Electrificat & Energy, Varennes, PQ J0L 1N0, Canada
[2] CNR, IMEM, I-43124 Parma, Italy
[3] CNR, Ist Nanosci, I-41125 Modena, Italy
[4] Fraunhofer Inst Silicatforsch ISC, D-97082 Wurzburg, Germany
[5] Imperial Coll London, Dyson Sch Design Engn, London SW7 2AZ, England
关键词
solid electrolyte; Li ion conductor; Li loss; chemical phase; stabilization; SOLID-STATE; LI METAL; CONDUCTIVITY; BATTERIES; AL; TRANSPORT; POLYMER; DENSIFICATION; MECHANISMS; MEMBRANE;
D O I
10.1021/acsaem.9b02401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type lithium lanthanum zirconate (Li7La3Zr2O12, LLZO)-based ceramic electrolyte has potential for further development of all-solid-state energy storage technologies including Li metal batteries as well as Li-S and Li-O-2 chemistries. The essential prerequisites such as LLZO's compactness, stability, and ionic conductivity for this development are nearly achievable via the solid-state reaction route (SSR) at high temperatures, but it involves a trade-off between LLZO's caveats because of Li loss via volatilization. For example, SSR between lithium carbonate, lanthanum oxide, and zirconium oxide is typically supplemented by dopants (e.g., gallium or aluminum) to yield the stabilized cubic phase (c-LLZO) that is characterized by ionic conductivity an order of magnitude higher than the other polymorphs of LLZO. While the addition of dopants as phase stabilizing agent and supplying extra Li precursor for compensating Li loss at high temperatures become common practice in the solid-state process of LLZO, the exact role of dopants and stabilization pathway is still poorly understood, which leads to several manufacturing issues. By following LLZO's chemical phase evolution in relation to Li loss at high temperatures, we here show that stabilized c-LLZO can directly be achieved by an in situ control of lithium loss during SSR and without needing dopants. In light of this, we demonstrate that dopants in the conventional SSR route also play a similar role, i.e., making more accessible Li to the formation and phase stabilization of c-LLZO, as revealed by our in situ X-ray diffraction analysis. Further microscopic (STEM, EDXS, and EELS) analysis of the samples obtained under various SSR conditions provides insights into LLZO phase behavior. Our study can contribute to the development of more reliable solid-state manufacturing routes to Garnet-type ceramic electrolytes in preferred polymorphs exhibiting high ionic conductivity and stability for all-solid-state energy storage.
引用
收藏
页码:3415 / 3424
页数:10
相关论文
共 50 条
  • [21] Particle Morphology and Lithium Segregation to Surfaces of the Li7La3Zr2O12 Solid Electrolyte
    Canepa, Pieremanuele
    Dawson, James A.
    Gautam, Gopalakrishnan Sai
    Statham, Joel M.
    Parker, Stephen C.
    Islam, M. Saiful
    CHEMISTRY OF MATERIALS, 2018, 30 (09) : 3019 - 3027
  • [22] Research Progress in Doping Modification of Garnet Structured Li7La3Zr2O12 Solid Electrolyte
    Xiao Y.
    Yang J.
    Wang N.
    Zhang X.
    Zhao H.
    Du L.
    Huang X.
    Zhongguo Xitu Xuebao/Journal of the Chinese Rare Earth Society, 2023, 41 (03): : 520 - 540
  • [23] Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12
    Squires, Alexander G.
    Scanlon, David O.
    Morgan, Benjamin J.
    CHEMISTRY OF MATERIALS, 2020, 32 (05) : 1876 - 1886
  • [24] Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery
    Jin, Ying
    McGinn, Paul J.
    JOURNAL OF POWER SOURCES, 2013, 239 : 326 - 331
  • [25] Effect of Stress State on Phase Stability and Ionic Transport in the Solid Electrolyte Li7La3Zr2O12
    Monismith, Scott
    Qu, Jianmin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (19): : 10777 - 10785
  • [26] Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12
    Han, Jiantao
    Zhu, Jinlong
    Li, Yutao
    Yu, Xiaohui
    Wang, Shanmin
    Wu, Gang
    Xie, Hui
    Vogel, Sven C.
    Izumi, Fujio
    Momma, Koichi
    Kawamura, Yukihiko
    Huang, Yunhui
    Goodenough, John B.
    Zhao, Yusheng
    CHEMICAL COMMUNICATIONS, 2012, 48 (79) : 9840 - 9842
  • [27] Tetragonal vs. cubic phase stability in Al - free Ta doped Li7La3Zr2O12 garnet Li ion solid electrolyte
    Thompson, Travis
    Wolfenstine, Jeff
    Allen, Jan
    Johannes, Michelle
    Huq, Ashfia
    Sakamoto, Jeff
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [28] Air stability of tetragonal solid-state electrolyte Li7La3Zr2O12
    Aleksandrov, D. S.
    Popovich, A. A.
    Qingsheng, W.
    Novikov, P. A.
    MATERIALS TODAY-PROCEEDINGS, 2020, 30 : 583 - 586
  • [29] A rational design of garnet-type Li7La3Zr2O12 with ultrahigh moisture stability
    Zheng, Hongpeng
    Li, Guoyao
    Liu, Jiqiong
    Wu, Shaoping
    Zhang, Xingmin
    Wu, Yongmin
    Zhu, Hong
    Huang, Xiao
    Liu, Hezhou
    Duan, Huanan
    ENERGY STORAGE MATERIALS, 2022, 49 : 278 - 290
  • [30] Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet
    Xiao Huang
    Chen Shen
    Kun Rui
    Jun Jin
    Meifen Wu
    Xiangwei Wu
    Zhaoyin Wen
    JOM, 2016, 68 : 2593 - 2600