Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability

被引:62
|
作者
Paolella, Andrea [1 ]
Zhu, Wen [1 ]
Bertoni, Giovanni [2 ,3 ]
Savoie, Sylvio [1 ]
Feng, Zimin [1 ]
Demers, Hendrix [1 ]
Gariepy, Vincent [1 ]
Girard, Gabriel [1 ]
Rivard, Etienne [1 ]
Delaporte, Nicolas [1 ]
Guerfi, Abdelbast [1 ]
Lorrmann, Henning [4 ]
George, Chandramohan [5 ]
Zaghib, Karim [1 ]
机构
[1] Hydro Quebec, Ctr Excellence Transportat Electrificat & Energy, Varennes, PQ J0L 1N0, Canada
[2] CNR, IMEM, I-43124 Parma, Italy
[3] CNR, Ist Nanosci, I-41125 Modena, Italy
[4] Fraunhofer Inst Silicatforsch ISC, D-97082 Wurzburg, Germany
[5] Imperial Coll London, Dyson Sch Design Engn, London SW7 2AZ, England
关键词
solid electrolyte; Li ion conductor; Li loss; chemical phase; stabilization; SOLID-STATE; LI METAL; CONDUCTIVITY; BATTERIES; AL; TRANSPORT; POLYMER; DENSIFICATION; MECHANISMS; MEMBRANE;
D O I
10.1021/acsaem.9b02401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type lithium lanthanum zirconate (Li7La3Zr2O12, LLZO)-based ceramic electrolyte has potential for further development of all-solid-state energy storage technologies including Li metal batteries as well as Li-S and Li-O-2 chemistries. The essential prerequisites such as LLZO's compactness, stability, and ionic conductivity for this development are nearly achievable via the solid-state reaction route (SSR) at high temperatures, but it involves a trade-off between LLZO's caveats because of Li loss via volatilization. For example, SSR between lithium carbonate, lanthanum oxide, and zirconium oxide is typically supplemented by dopants (e.g., gallium or aluminum) to yield the stabilized cubic phase (c-LLZO) that is characterized by ionic conductivity an order of magnitude higher than the other polymorphs of LLZO. While the addition of dopants as phase stabilizing agent and supplying extra Li precursor for compensating Li loss at high temperatures become common practice in the solid-state process of LLZO, the exact role of dopants and stabilization pathway is still poorly understood, which leads to several manufacturing issues. By following LLZO's chemical phase evolution in relation to Li loss at high temperatures, we here show that stabilized c-LLZO can directly be achieved by an in situ control of lithium loss during SSR and without needing dopants. In light of this, we demonstrate that dopants in the conventional SSR route also play a similar role, i.e., making more accessible Li to the formation and phase stabilization of c-LLZO, as revealed by our in situ X-ray diffraction analysis. Further microscopic (STEM, EDXS, and EELS) analysis of the samples obtained under various SSR conditions provides insights into LLZO phase behavior. Our study can contribute to the development of more reliable solid-state manufacturing routes to Garnet-type ceramic electrolytes in preferred polymorphs exhibiting high ionic conductivity and stability for all-solid-state energy storage.
引用
收藏
页码:3415 / 3424
页数:10
相关论文
共 50 条
  • [1] Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12
    Matsui, M.
    Takahashi, K.
    Sakamoto, K.
    Hirano, A.
    Takeda, Y.
    Yamamoto, O.
    Imanishi, N.
    DALTON TRANSACTIONS, 2014, 43 (03) : 1019 - 1024
  • [2] Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12
    Li, Yutao
    Han, Jian-Tao
    Wang, Chang-An
    Vogel, Sven C.
    Xie, Hui
    Xu, Maowen
    Goodenough, John B.
    JOURNAL OF POWER SOURCES, 2012, 209 : 278 - 281
  • [3] Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12
    Matsui, Masaki
    Sakamoto, Kimie
    Takahashi, Keita
    Hirano, Atsushi
    Takeda, Yasuo
    Yamamoto, Osamu
    Imanishi, Nobuyuki
    SOLID STATE IONICS, 2014, 262 : 155 - 159
  • [4] Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12
    Kazyak, Eric
    Chen, Kuan-Hung
    Wood, Kevin N.
    Davis, Andrew L.
    Thompson, Travis
    Bielinski, Ashley R.
    Sanchez, Adrian J.
    Wang, Xiang
    Wane, Chongmin
    Sakamoto, Jeff
    Dasgupta, Neil P.
    CHEMISTRY OF MATERIALS, 2017, 29 (08) : 3785 - 3792
  • [5] Comprehensive Dopant Screening in Li7La3Zr2O12 Garnet Solid Electrolyte
    Anderson, Ethan
    Zolfaghar, Elliot
    Jonderian, Antranik
    Khaliullin, Rustam Z.
    McCalla, Eric
    ADVANCED ENERGY MATERIALS, 2024, 14 (20)
  • [6] Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor
    Geiger, Charles A.
    Alekseev, Evgeny
    Lazic, Biljana
    Fisch, Martin
    Armbruster, Thomas
    Langner, Ramona
    Fechtelkord, Michael
    Kim, Namjun
    Pettke, Thomas
    Weppner, Werner
    INORGANIC CHEMISTRY, 2011, 50 (03) : 1089 - 1097
  • [7] Effect of LiOH on Tantalum Doped Li7La3Zr2O12 Garnet Solid Electrolyte
    Song J.
    Zhang H.
    Xue L.
    Zhang W.
    Yan Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (03): : 769 - 774
  • [8] The Fabrication of Garnet-Type Li7La3Zr2O12 Solid Electrolyte Materials
    Zhang, Xingxing
    Fergus, Jeffrey W.
    IONIC AND MIXED CONDUCTING CERAMICS 10, 2016, 72 (07): : 133 - 137
  • [9] Misconception in the Analysis of Tetragonal Li7La3Zr2O12 Garnet
    Jayaraman, Vinoth Kumar
    Porob, Digamber G.
    Prakash, Annigere S.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (22) : 11442 - 11447
  • [10] Fast lithium ion conduction in garnet-type Li7La3Zr2O12
    Murugan, Ramaswamy
    Thangadurai, Venkataraman
    Weppner, Werner
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) : 7778 - 7781