Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation

被引:24
|
作者
Mansour, M. B. A. [1 ]
机构
[1] S Valley Univ, Fac Sci, Dept Math, Qena, Egypt
关键词
reaction; diffusion; chemotaxis; bacterial pattern formation; traveling waves;
D O I
10.1016/j.apm.2006.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider a nonlinear reaction-diffusion-chemotaxis model for the description of the spatiotemporal evolution of the bacteria of the type Paenibacillus dendritiformis on a thin layer of agar in a Petri dish. We perform a traveling wave analysis for the model equation showing the existence of traveling wave solutions, in particular, the sharp wave front type solutions with minimum speed. Further, we present numerical investigations for a special case. The minimum speed is estimated and the profile of the traveling wave solution is calculated and compared for different numerical methods. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 50 条
  • [31] TRAVELING WAVE SOLUTIONS IN PARAMETRIC FORMS FOR A DIFFUSION MODEL WITH A NONLINEAR RATE OF GROWTH
    Feng, Zhaosheng
    Chen, Goong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (03) : 763 - 780
  • [32] Traveling Wave Solutions for Nonlinear Reaction-Diffusion Equations as Dynamical Systems Problems
    Faustino Sánchez-Garduño
    Víctor Castellanos
    Lobachevskii Journal of Mathematics, 2022, 43 : 141 - 161
  • [33] Traveling Wave Solutions for Nonlinear Reaction-Diffusion Equations as Dynamical Systems Problems
    Sanchez-Garduno, Faustino
    Castellanos, Victor
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 141 - 161
  • [34] Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations
    Hou, XJ
    Li, Y
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (02) : 681 - 701
  • [35] Travelling wave solutions in a negative nonlinear diffusion–reaction model
    Yifei Li
    Peter van Heijster
    Robert Marangell
    Matthew J. Simpson
    Journal of Mathematical Biology, 2020, 81 : 1495 - 1522
  • [36] Traveling wave patterns in nonlinear reaction–diffusion equations
    M. B. A. Mansour
    Journal of Mathematical Chemistry, 2010, 48 : 558 - 565
  • [37] TRAVELING WAVE SOLUTIONS OF A REACTION-DIFFUSION PREDATOR-PREY MODEL
    Liu, Jiang
    Shang, Xiaohui
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1063 - 1078
  • [38] Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species
    Brown, S
    Dockery, J
    Pernarowski, M
    MATHEMATICAL BIOSCIENCES, 2005, 194 (01) : 21 - 36
  • [39] Traveling wave solutions for reaction-diffusion systems
    Lin, Zhigui
    Pedersen, Michael
    Tian, Canrong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3303 - 3313
  • [40] Traveling wave solutions to a reaction-diffusion equation
    Feng, Zhaosheng
    Zheng, Shenzhou
    Gao, David Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 756 - 773