Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation

被引:24
|
作者
Mansour, M. B. A. [1 ]
机构
[1] S Valley Univ, Fac Sci, Dept Math, Qena, Egypt
关键词
reaction; diffusion; chemotaxis; bacterial pattern formation; traveling waves;
D O I
10.1016/j.apm.2006.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider a nonlinear reaction-diffusion-chemotaxis model for the description of the spatiotemporal evolution of the bacteria of the type Paenibacillus dendritiformis on a thin layer of agar in a Petri dish. We perform a traveling wave analysis for the model equation showing the existence of traveling wave solutions, in particular, the sharp wave front type solutions with minimum speed. Further, we present numerical investigations for a special case. The minimum speed is estimated and the profile of the traveling wave solution is calculated and compared for different numerical methods. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 50 条
  • [21] TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DIFFUSION-CONVECTION-REACTION MODELS
    Li, Jibin
    Shi, Jianping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (10):
  • [22] TRAVELING WAVE SOLUTIONS IN A NONLOCAL REACTION-DIFFUSION POPULATION MODEL
    Han, Bang-Sheng
    Wang, Zhi-Cheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 1057 - 1076
  • [23] TRAVELING WAVE SOLUTIONS IN A REACTION-DIFFUSION MODEL FOR CRIMINAL ACTIVITY
    Berestycki, H.
    Rodriguez, N.
    Ryzhik, L.
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1097 - 1126
  • [24] Traveling wave solutions of a model of skin pattern formation in a singular case
    Kazmierczak, Bogdan
    Piechor, Kazimierz
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (03) : 325 - 337
  • [25] APPROACH OF SOLUTIONS OF NONLINEAR DIFFUSION EQUATIONS TO TRAVELING WAVE SOLUTIONS
    FIFE, PC
    MCLEOD, JB
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (06) : 1076 - 1078
  • [26] On Traveling Wave Fronts in a Degenerate Nonlinear Parabolic System Modeling Bacterial Pattern Formation
    Mansour M.B.A.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 1289 - 1297
  • [27] ASYMPTOTIC STABILITY OF TRAVELING FRONTS TO A CHEMOTAXIS MODEL WITH NONLINEAR DIFFUSION
    Ghani, Mohammad
    Li, Jingyu
    Zhang, Kaijun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (12): : 6253 - 6265
  • [28] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis
    Ma, Manjun
    Gao, Meiyan
    Carretero-Gonzalez, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1883 - 1909
  • [29] SUPERIMPOSED TRAVELING-WAVE SOLUTIONS FOR NONLINEAR DIFFUSION
    HILL, DL
    HILL, JM
    QUARTERLY OF APPLIED MATHEMATICS, 1993, 51 (04) : 633 - 641
  • [30] TRAVELING WAVE SOLUTIONS FOR A CHEMOTAXIS SYSTEM
    Catrina, F.
    Reyes, V. M. G.
    BIOMAT 2013: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2014, : 43 - 62