Acquiring Non-parametric Scattering Phase Function from a Single Image

被引:0
|
作者
Minetomo, Yuki [1 ]
Kubo, Hiroyuki [1 ]
Funatomi, Takuya [1 ]
Shinya, Mikio [2 ,3 ]
Mukaigawa, Yasuhiro [1 ]
机构
[1] Nara Inst Sci & Technol, Nara, Ikoma, Japan
[2] Toho Univ, Ota City, Tokyo, Japan
[3] UEI Res, Tokyo, Japan
关键词
phase function; scattering; measurement;
D O I
10.1145/3145749.3149424
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Acquiring accurate scattering properties is critical for rendering translucent materials such as participating media. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the appearance of the material. While there are many techniques to acquire BRDF, there are only a few methods for the non-parametric phase function. We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image. Furthermore, in various experiments, we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Acquiring non-parametric scattering phase function from a single image
    Yuki Minetomo
    Hiroyuki Kubo
    Takuya Funatomi
    Mikio Shinya
    Yasuhiro Mukaigawa
    Computational Visual Media, 2018, 4 (04) : 323 - 331
  • [2] Acquiring non-parametric scattering phase function from a single image
    Minetomo Y.
    Kubo H.
    Funatomi T.
    Shinya M.
    Mukaigawa Y.
    Computational Visual Media, 2018, 4 (04) : 323 - 331
  • [3] Non-parametric Single Image Super Resolution
    Han, Yunsang
    Chae, Tae Byeong
    Lee, Sangkeun
    PROCEEDINGS OF THE 19TH KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION (FCV 2013), 2013, : 281 - 284
  • [4] Depth prediction from a single image based on non-parametric learning in the gradient domain
    Xu, Huihui
    Jiang, Mingyan
    OPTIK, 2019, 181 : 880 - 890
  • [5] Colorectal MRI image registration using phase mutual information from non-parametric probability density function estimator
    Zhang, Weiwei
    Joshi, Niranjan
    Brady, Michael
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1103 - 1106
  • [6] NON-PARAMETRIC NATURAL IMAGE MATTING
    Sarim, Muhammad
    Hilton, Adrian
    Guillemaut, Jean-Yves
    Kim, Hansung
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3213 - 3216
  • [7] Non-parametric probabilistic image segmentation
    Andreetto, Marco
    Zelnik-Manor, Lihi
    Perona, Pietro
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1104 - 1111
  • [8] Non-parametric Bayesian models of response function in dynamic image sequences
    Tichy, Ondrej
    Smidl, Vaclav
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 90 - 100
  • [9] PARAMETRIC VERSUS NON-PARAMETRIC COMPLEX IMAGE ANALYSIS
    Singh, Jagmal
    Soccorsi, Matteo
    Datcu, Mihai
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1311 - 1314
  • [10] Non-Parametric Learning-based Depth Estimation from a Single Image in the Fourier Domain
    Xu, Huihui
    Jiang, Mingyan
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 334 - 338