Acquiring Non-parametric Scattering Phase Function from a Single Image

被引:0
|
作者
Minetomo, Yuki [1 ]
Kubo, Hiroyuki [1 ]
Funatomi, Takuya [1 ]
Shinya, Mikio [2 ,3 ]
Mukaigawa, Yasuhiro [1 ]
机构
[1] Nara Inst Sci & Technol, Nara, Ikoma, Japan
[2] Toho Univ, Ota City, Tokyo, Japan
[3] UEI Res, Tokyo, Japan
关键词
phase function; scattering; measurement;
D O I
10.1145/3145749.3149424
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Acquiring accurate scattering properties is critical for rendering translucent materials such as participating media. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the appearance of the material. While there are many techniques to acquire BRDF, there are only a few methods for the non-parametric phase function. We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image. Furthermore, in various experiments, we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Hybrid BM3D and PDE filtering for non-parametric single image denoising
    Wen, Ying
    Guo, Zhichang
    Yao, Wenjuan
    Yan, Dong
    Sun, Jiebao
    SIGNAL PROCESSING, 2021, 184
  • [42] A non-parametric analysis of the luminosity function of cluster galaxies
    Trevese, D
    Appodia, B
    Cenci, A
    Cirimele, G
    ASTROPHYSICAL LETTERS & COMMUNICATIONS, 1996, 33 (1-5) : 177 - 180
  • [43] Preadjusted non-parametric estimation of a conditional distribution function
    Veraverbeke, Noel
    Gijbels, Irene
    Omelka, Marek
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) : 399 - 438
  • [44] Non-parametric estimation of the preferential attachment function from one network snapshot
    Pham, Thong
    Sheridan, Paul
    Shimodaira, Hidetoshi
    JOURNAL OF COMPLEX NETWORKS, 2021, 9 (05)
  • [45] Non-parametric Bayesian Dictionary Learning for Image Super Resolution
    He, Li
    Qi, Hairong
    Zaretzki, Russell
    2011 FUTURE OF INSTRUMENTATION INTERNATIONAL WORKSHOP (FIIW), 2011,
  • [46] Image segmentation using a generic, fast and non-parametric approach
    Fiorio, C
    Nock, R
    TENTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1998, : 450 - 458
  • [47] A Non-Parametric Framework for No-Reference Image Quality Assessment
    Manap, Redzuan Abdul
    Frangi, Alejandro F.
    Shao, Ling
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 562 - 566
  • [48] Hierarchical non-parametric Markov random field for image segmentation
    Wang, Xiangrong
    Zhao, Jieyu
    IET COMPUTER VISION, 2017, 11 (08) : 717 - 724
  • [49] Non-parametric data modeling in SAR image quality assessment
    Michel, JD
    Cai, Q
    Drake, K
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY V, 1998, 3370 : 166 - 173
  • [50] Image Seach via Non-Parametric Quantum Theory Ranking
    Zhu Songhao
    Sun Wei
    Hu Juanjuan
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 962 - 966