NON-PARAMETRIC NATURAL IMAGE MATTING

被引:0
|
作者
Sarim, Muhammad [1 ]
Hilton, Adrian [1 ]
Guillemaut, Jean-Yves [1 ]
Kim, Hansung [1 ]
机构
[1] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Alpha matte; composite; trimap; non-parametric statistics;
D O I
10.1109/ICIP.2009.5414367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Natural image matting is an extremely challenging image processing problem due to its ill-posed nature. It often requires skilled user interaction to aid definition of foreground and background regions. Current algorithms use these pre-defined regions to build local foreground and background colour models. In this paper we propose a novel approach which uses non-parametric statistics to model image appearance variations. This technique overcomes the limitations of previous parametric approaches which are purely colour-based and thereby unable to model natural image structure. The proposed technique consists of three successive stages: (i) background colour estimation, (ii) foreground colour estimation, (iii) alpha estimation. Colour estimation uses patch-based matching techniques to efficiently recover the optimum colour by comparison against patches from the known regions. Quantitative evaluation against ground truth demonstrates that the technique produces better results and successfully recovers fine details such as hair where many other algorithms fail.
引用
下载
收藏
页码:3213 / 3216
页数:4
相关论文
共 50 条
  • [1] A Global Non-parametric Sampling Based Image Matting
    Alam, Naveed
    Sarim, Muhammad
    Shaikh, Abdul Basit
    2013 IEEE 9TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET 2013), 2013, : 239 - 244
  • [2] Non-parametric probabilistic image segmentation
    Andreetto, Marco
    Zelnik-Manor, Lihi
    Perona, Pietro
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1104 - 1111
  • [3] PARAMETRIC VERSUS NON-PARAMETRIC COMPLEX IMAGE ANALYSIS
    Singh, Jagmal
    Soccorsi, Matteo
    Datcu, Mihai
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1311 - 1314
  • [4] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [5] Non-Parametric Learning for Natural Plan Generation
    Baldwin, Ian
    Newman, Paul
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 4311 - 4317
  • [6] Non-parametric Single Image Super Resolution
    Han, Yunsang
    Chae, Tae Byeong
    Lee, Sangkeun
    PROCEEDINGS OF THE 19TH KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION (FCV 2013), 2013, : 281 - 284
  • [7] EFFECTIVENESS OF NON-PARAMETRIC TECHNIQUES IN IMAGE RETRIEVAL
    Zuva, Tranos
    Ngwira, Seleman M.
    Zuva, Keneilwe
    Ojo, Sunday O.
    2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [8] Joint Parametric and Non-parametric Curve Evolution for Medical Image Segmentation
    Farzinfar, Mahshid
    Xue, Zhong
    Teoh, Eam Khwang
    COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 167 - +
  • [9] Unifying Framework for Decomposition Models of Parametric and Non-parametric Image Registration
    Ibrahim, Mazlinda
    Chen, Ke
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [10] Natural image and video matting
    Abhilash, R.
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL IV, PROCEEDINGS, 2007, : 471 - 477