Two properties of sequence of vector measures on effect algebras

被引:0
|
作者
Lin Qing-shui [1 ]
Li Rong-lu [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150006, Peoples R China
关键词
Effect algebra; s-bounded; vector measure;
D O I
10.1007/s11766-010-2354-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (L, circle plus, 0, 1) be an effect algebra and let X be a Banach space. A function mu : L -> X is called a vector measure if mu(a circle plus b) = mu(a) + mu(b) whenever a perpendicular to b in L. The function mu is said to be s-bounded if lim(n ->infinity) mu(a(n)) = 0 in X for any orthogonal sequence (a(n))(n is an element of N) in L. In this paper, we introduce two properties of sequence of s-bounded vector measures and give some results on these properties.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [21] 2 PROPERTIES OF BOOLEAN ALGEBRAS WITH A VECTOR MEASURE
    POROSHKIN, AG
    SIBERIAN MATHEMATICAL JOURNAL, 1975, 16 (02) : 259 - 267
  • [22] TOPOLOGICAL PROPERTIES OF VECTOR MEASURES AND APPLICATIONS
    SAINTEBEUVE, MF
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (13): : 881 - 884
  • [23] ON ALGEBRAIC PROPERTIES OF RELIABILITY VECTOR MEASURES
    SEITZ, K
    MATHEMATICAL MODELLING, 1987, 8 : 88 - 91
  • [24] Properties of binary vector dissimilarity measures
    Zhang, B
    Srihari, SN
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 797 - 800
  • [25] THE PROPERTIES OF A RESIDUAL SET OF VECTOR MEASURES
    ANANTHARAMAN, R
    GARG, KM
    LECTURE NOTES IN MATHEMATICS, 1983, 1033 : 12 - 35
  • [26] STRUCTURE THEORY FOR A CLASS OF CONVOLUTION ALGEBRAS OF VECTOR-VALUED MEASURES
    DUCHON, M
    MATHEMATISCHE NACHRICHTEN, 1974, 60 (1-6) : 97 - 108
  • [27] Vitali-Hahn-Saks theorem for vector measures on operator algebras
    Chetcuti, Emmanuel
    Hamhalter, Jan
    QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 479 - 493
  • [28] Regular Gleason Measures and Generalized Effect Algebras
    Anatolij Dvurečenskij
    Jiří Janda
    International Journal of Theoretical Physics, 2015, 54 : 4313 - 4326
  • [29] Regular Gleason Measures and Generalized Effect Algebras
    Dvurecenskij, Anatolij
    Janda, Jiri
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (12) : 4313 - 4326
  • [30] Probability Weights and Measures on Finite Effect Algebras
    D. J. Foulis
    R. J. Greechie
    International Journal of Theoretical Physics, 1999, 38 : 3189 - 3208