Regular Gleason Measures and Generalized Effect Algebras

被引:0
|
作者
Anatolij Dvurečenskij
Jiří Janda
机构
[1] Mathematical Institute,Department of Algebra and Geometry
[2] Slovak Academy of Sciences,Department of Mathematics and Statistics, Faculty of Science
[3] Palacký University,undefined
[4] Masaryk University,undefined
关键词
Hilbert space; Measure; Regular measure; -additive measure; Gleason measure; Generalized effect algebra; Bilinear form; Singular bilinear form; Regular bilinear form; Monotone convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
引用
收藏
页码:4313 / 4326
页数:13
相关论文
共 50 条
  • [1] Regular Gleason Measures and Generalized Effect Algebras
    Dvurecenskij, Anatolij
    Janda, Jiri
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (12) : 4313 - 4326
  • [2] Regular elements in generalized hermitian algebras
    Foulis, David J.
    Pulmannova, Sylvia
    MATHEMATICA SLOVACA, 2011, 61 (02) : 155 - 172
  • [3] CONVERGENT REGULAR MEASURES ON MV-ALGEBRAS
    Barbieri, Giuseppina
    KYBERNETIKA, 2009, 45 (06) : 1052 - 1058
  • [4] Topological properties of regular generalized function algebras
    H. Vernaeve
    Monatshefte für Mathematik, 2014, 173 : 433 - 439
  • [5] Topological properties of regular generalized function algebras
    Vernaeve, H.
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (03): : 433 - 439
  • [6] BANACH SPACE-VALUED GLEASON MEASURES ON VONNEUMANN-ALGEBRAS
    LUCZAK, A
    LECTURE NOTES IN MATHEMATICS, 1989, 1391 : 178 - 190
  • [7] INTERVALS IN GENERALIZED EFFECT ALGEBRAS AND THEIR SUB-GENERALIZED EFFECT ALGEBRAS
    Riecanova, Zdenka
    Zajac, Michal
    ACTA POLYTECHNICA, 2013, 53 (03) : 314 - 316
  • [8] MEASURES ON EFFECT ALGEBRAS
    Barbieri, Giuseppina
    Garcia-Pacheco, Francisco J.
    Moreno-Pulido, Soledad
    MATHEMATICA SLOVACA, 2019, 69 (01) : 159 - 170
  • [9] MEASURES ON EFFECT ALGEBRAS
    Luo Laizhen
    Li Ronglu
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 433 - 439
  • [10] Embeddings of generalized effect algebras into complete effect algebras
    Z. Riečanová
    Soft Computing, 2006, 10 : 476 - 482