Embeddings of generalized effect algebras into complete effect algebras

被引:0
|
作者
Z. Riečanová
机构
[1] Slovak University of Technology,Department of Mathematics, Faculty of Electrical Engineering and Information Technology
来源
Soft Computing | 2006年 / 10卷
关键词
Mathematical Logic; Generalize Effect; Control Engineer; Computing Methodology; Effect Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized effect algebras as posets are unbounded versions of effect algebras having bounded effect-algebraic extensions. We show that when the MacNeille completion MC(P) of a generalized effect algebra P cannot be organized into a complete effect algebra by extending the operation ⊕ onto MC(P) then still P may be densely embedded into a complete effect algebra. Namely, we show these facts for Archimedean GMV-effect algebras and block-finite prelattice generalized effect algebras. Moreover, we show that extendable commutative BCK-algebras directed upwards are equivalent to generalized MV-effect algebras.
引用
收藏
页码:476 / 482
页数:6
相关论文
共 50 条
  • [1] Embeddings of generalized effect algebras into complete effect algebras
    Riecanová, Z
    SOFT COMPUTING, 2006, 10 (06) : 476 - 482
  • [2] INTERVALS IN GENERALIZED EFFECT ALGEBRAS AND THEIR SUB-GENERALIZED EFFECT ALGEBRAS
    Riecanova, Zdenka
    Zajac, Michal
    ACTA POLYTECHNICA, 2013, 53 (03) : 314 - 316
  • [3] On the Structure of Generalized Effect Algebras and Separation Algebras
    Alexander, Sarah
    Jipsen, Peter
    Upegui, Nadiya
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2018, 11194 : 148 - 165
  • [4] Intervals in generalized effect algebras
    Jiří Janda
    Zdenka Riečanová
    Soft Computing, 2014, 18 : 413 - 418
  • [5] ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS
    Paseka, Jan
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (03) : 375 - 384
  • [6] Intervals in generalized effect algebras
    Janda, Jiri
    Riecanova, Zdenka
    SOFT COMPUTING, 2014, 18 (03) : 413 - 418
  • [7] Dimension theory for generalized effect algebras
    Foulis, David J.
    Pulmannova, Sylvia
    ALGEBRA UNIVERSALIS, 2013, 69 (04) : 357 - 386
  • [8] Generalized EMV-Effect Algebras
    Borzooei, R. A.
    Dvurecenskij, A.
    Sharafi, A. H.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (08) : 2267 - 2279
  • [9] A note on unitizations of generalized effect algebras
    Gejza Jenča
    Soft Computing, 2016, 20 : 115 - 118
  • [10] A generalized Sasaki projection for effect algebras
    Bennett, MK
    Foulis, DJ
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 55 - 66