Monte Carlo simulation of the spatial distribution of energy deposition for an electron microbeam

被引:1
|
作者
Lynch, DJ
Wilson, WE
Batdorf, MT
Resat, MBS
Kimmel, GA
Miller, JH
机构
[1] Washington State Univ, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
D O I
10.1667/RR3341
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dosimetry calculations characterizing the spatial variation of the energy deposited by the slowing and stopping of energetic electrons are reported and compared with experimental measurements from an electron microbeam facility. The computations involve event-by-event, detailed-histories Monte Carlo simulations of low-energy electrons interacting in water vapor. Simulations of electron tracks with starting energies from 30 to 80 keV are used to determine energy deposition distributions in thin cylindrical rings as a function of penetration and radial distance from a beam source. Experimental measurements of the spatial distribution of an electron microbeam in air show general agreement with the density-scaled simulation results for water vapor at these energies, yielding increased confidence in the predictions of Monte Carlo track-structure simulations for applications of the microbeam as a single-cell irradiator. (c) 2005 by Radiation Research Society.
引用
收藏
页码:468 / 472
页数:5
相关论文
共 50 条
  • [21] Spatial correlations in the electron gas: Path integral Monte Carlo simulation
    S. V. Shevkunov
    Journal of Experimental and Theoretical Physics, 2006, 103 : 92 - 109
  • [22] Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation
    Churmakov, DY
    Meglinski, IV
    Piletsky, SA
    Greenhalgh, DA
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (14) : 1722 - 1728
  • [23] Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra
    Shandiz, M. Attarian
    Salvat, F.
    Gauvin, R.
    SCANNING, 2016, 38 (06) : 475 - 491
  • [24] Dose distribution for electron beam using Monte Carlo simulation with GATE
    Leste, J.
    Chauvin, M.
    Younes, T.
    Vieillevigne, L.
    Bardies, M.
    Franceries, X.
    Ferrand, R.
    Pierrat, N.
    Bartolucci, L.
    Simon, L.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S967 - S968
  • [25] Monte Carlo simulation of the charge distribution induced by a high-energy electron beam in an insulating target
    Renoud, R
    Mady, F
    Ganachaud, JP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (02) : 231 - 247
  • [27] Monte Carlo simulation of bremsstrahlung spectra for low energy electron accelerators
    Haysak, I. I.
    Takhtasiev, O., V
    Khushvaktov, J.
    Solnyshkin, A. A.
    Tanchak, A.
    Holomb, R. R.
    Katovsky, K.
    2020 21ST INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING (EPE), 2020, : 362 - 365
  • [28] A Monte Carlo simulation for tolerancing microbeam free space optical interconnects
    Hendrick, WL
    Ozkan, NSF
    Marchand, PJ
    Esener, SC
    OPTICS IN COMPUTING, TECHNICAL DIGEST, 1999, : 133 - 135
  • [29] Monte-Carlo simulation of low energy electron scattering in solids
    Kuhr, JC
    Fitting, HJ
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1999, 172 (02): : 433 - 449
  • [30] Monte-Carlo simulation of low energy electron scattering in solids
    Kuhr, J.-Ch.
    Fitting, H.-J.
    Physica Status Solidi (A) Applied Research, 1999, 172 (02): : 433 - 450