Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction

被引:5
|
作者
Eymard, Robert [1 ]
Hilhorst, Danielle [2 ]
Murakawa, Hideki [3 ]
Olech, Michal [2 ,4 ]
机构
[1] Univ Paris Est, F-77454 Marne La Vallee, France
[2] Univ Paris 11, CNRS, Math Lab, F-91405 Orsay, France
[3] Toyama Univ, Grad Sch Sci & Engn Res, Toyama 9308555, Japan
[4] Uniwersytetu Wroclawskiego, Inst Matemat, PL-50384 Wroclaw, Poland
关键词
Instantaneous reaction limit; Mass-action kinetics; Finite volume methods; Convergence of approximate solutions; Discrete a priori estimates; Kolmogorov's theorem;
D O I
10.1007/s11401-010-0604-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate. It follows that the solution converges to the solution of a nonlinear diffusion problem, as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.
引用
收藏
页码:631 / 654
页数:24
相关论文
共 50 条