Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction
被引:5
|
作者:
Eymard, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, F-77454 Marne La Vallee, FranceUniv Paris Est, F-77454 Marne La Vallee, France
Eymard, Robert
[1
]
Hilhorst, Danielle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, CNRS, Math Lab, F-91405 Orsay, FranceUniv Paris Est, F-77454 Marne La Vallee, France
Hilhorst, Danielle
[2
]
Murakawa, Hideki
论文数: 0引用数: 0
h-index: 0
机构:
Toyama Univ, Grad Sch Sci & Engn Res, Toyama 9308555, JapanUniv Paris Est, F-77454 Marne La Vallee, France
Murakawa, Hideki
[3
]
Olech, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, CNRS, Math Lab, F-91405 Orsay, France
Uniwersytetu Wroclawskiego, Inst Matemat, PL-50384 Wroclaw, PolandUniv Paris Est, F-77454 Marne La Vallee, France
Olech, Michal
[2
,4
]
机构:
[1] Univ Paris Est, F-77454 Marne La Vallee, France
[2] Univ Paris 11, CNRS, Math Lab, F-91405 Orsay, France
[3] Toyama Univ, Grad Sch Sci & Engn Res, Toyama 9308555, Japan
[4] Uniwersytetu Wroclawskiego, Inst Matemat, PL-50384 Wroclaw, Poland
Instantaneous reaction limit;
Mass-action kinetics;
Finite volume methods;
Convergence of approximate solutions;
Discrete a priori estimates;
Kolmogorov's theorem;
D O I:
10.1007/s11401-010-0604-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate. It follows that the solution converges to the solution of a nonlinear diffusion problem, as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.
机构:
Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11623, Saudi ArabiaAl Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11623, Saudi Arabia