Invariant convex sets in polar representations

被引:15
|
作者
Biliotti, Leonardo [1 ]
Ghigi, Alessandro [2 ]
Heinzner, Peter [3 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
[2] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrata 1, I-27100 Pavia, Italy
[3] Ruhr Univ Bochum, Fak Math, Raum NA 4-74, D-44780 Bochum, Germany
关键词
MOMENT; RESPECT;
D O I
10.1007/s11856-016-1325-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k aS center dot p. If a aS, p is a maximal abelian subalgebra, then P = E a (c) a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted1 momentum map.
引用
收藏
页码:423 / 441
页数:19
相关论文
共 50 条
  • [31] Corrigendum to “A Fourier type transform on translation invariant valuations on convex sets”
    Semyon Alesker
    Israel Journal of Mathematics, 2014, 200 : 507 - 508
  • [32] On the Estimation of Convergence Times to Invariant Sets in Convex Polytopic Uncertain Systems
    McCloy, Ryan J.
    De Dona, Jose A.
    Seron, Maria M.
    ARTIFICIAL LIFE AND COMPUTATIONAL INTELLIGENCE, 2015, 8955 : 62 - 75
  • [33] COMPUTING CONTROLLED INVARIANT SETS FROM DATA USING CONVEX OPTIMIZATION
    Korda, Milan
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (05) : 2871 - 2899
  • [34] Blur Invariant Template Matching Using Projection onto Convex Sets
    Lebl, Matej
    Sroubek, Filip
    Kautsky, Jaroslav
    Flusser, Jan
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT I, 2019, 11678 : 351 - 362
  • [35] Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets
    Kerdreux, Thomas
    Liu, Lewis
    Julien, Simon Lacoste
    Scieur, Damien
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [37] BOUNDARY REPRESENTATIONS OF OPERATOR SPACES AND COMPACT RECTANGULAR MATRIX CONVEX SETS
    Fuller, Adam H.
    Hartz, Michael
    Lupini, Martino
    JOURNAL OF OPERATOR THEORY, 2018, 79 (01) : 139 - 172
  • [38] Free Convex Sets Defined by Rational Expressions Have LMI Representations
    Helton, J. William
    McCullough, Scott
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (02) : 425 - 448
  • [39] Integral representations and uniqueness sets for star-invariant subspaces.
    Poltoratski, A
    SYSTEMS, APPROXIMATION, SINGULAR INTEGRAL OPERATORS, AND RELATED TOPICS, 2001, 129 : 425 - 443
  • [40] Controlled Invariant Sets: Implicit Closed-Form Representations and Applications
    Anevlavis, Tzanis
    Liu, Zexiang
    Ozay, Necmiye
    Tabuada, Paulo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4506 - 4521