Invariant convex sets in polar representations

被引:15
|
作者
Biliotti, Leonardo [1 ]
Ghigi, Alessandro [2 ]
Heinzner, Peter [3 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
[2] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrata 1, I-27100 Pavia, Italy
[3] Ruhr Univ Bochum, Fak Math, Raum NA 4-74, D-44780 Bochum, Germany
关键词
MOMENT; RESPECT;
D O I
10.1007/s11856-016-1325-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k aS center dot p. If a aS, p is a maximal abelian subalgebra, then P = E a (c) a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted1 momentum map.
引用
收藏
页码:423 / 441
页数:19
相关论文
共 50 条
  • [21] Dual representations of convex sets and Gateaux differentiability spaces
    Levin, VL
    SET-VALUED ANALYSIS, 1999, 7 (02): : 133 - 157
  • [22] NOTE ON PRIME REPRESENTATIONS OF CONVEX POLYHEDRAL-SETS
    BONEH, A
    CARON, RJ
    LEMIRE, FW
    MCDONALD, JF
    TELGEN, J
    VORST, T
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 61 (01) : 137 - 142
  • [23] Invariant sets with arbitrary convex shapes in linear system dynamics
    Matcovschi, Mihaela
    Apetrii, Marius
    Pastravanu, Octavian
    Voicu, Mihail
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2021, 24 (04): : 402 - 417
  • [24] On the computation of convex robust control invariant sets for nonlinear systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    AUTOMATICA, 2010, 46 (08) : 1334 - 1338
  • [25] Polar Transformation on Image Features for Orientation-Invariant Representations
    Chen, Jinhui
    Luo, Zhaojie
    Zhang, Zhihong
    Huang, Faliang
    Ye, Zhiling
    Takiguchi, Tetsuya
    Hancock, Edwin R.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (02) : 300 - 313
  • [26] On the Weak Drop Property for Polar of Closed Bounded Convex Sets
    张子厚
    NortheasternMathematicalJournal, 2004, (03) : 331 - 338
  • [27] LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets
    Yildiran, Ugur
    Kose, I. Emre
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (02) : 535 - 551
  • [28] Dual Representations of Convex Sets and Gâteaux Differentiability Spaces
    Vladimir L. Levin
    Set-Valued Analysis, 1999, 7 : 133 - 157
  • [29] GAUSSIAN MEASURES AND POLAR SETS IN LOCALLY CONVEX-SPACES
    DINEEN, S
    NOVERRAZ, P
    ARKIV FOR MATEMATIK, 1979, 17 (02): : 217 - 223
  • [30] Convex invariant sets for discrete-time Lur'e systems
    Alamo, T.
    Cepeda, A.
    Fiacchini, M.
    Camacho, E. F.
    AUTOMATICA, 2009, 45 (04) : 1066 - 1071