Invariant convex sets in polar representations

被引:15
|
作者
Biliotti, Leonardo [1 ]
Ghigi, Alessandro [2 ]
Heinzner, Peter [3 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
[2] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrata 1, I-27100 Pavia, Italy
[3] Ruhr Univ Bochum, Fak Math, Raum NA 4-74, D-44780 Bochum, Germany
关键词
MOMENT; RESPECT;
D O I
10.1007/s11856-016-1325-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a compact invariant convex set E in a polar representation of a compact Lie group. Polar representations are given by the adjoint action of K on p, where K is a maximal compact subgroup of a real semisimple Lie group G with Lie algebra g = k aS center dot p. If a aS, p is a maximal abelian subalgebra, then P = E a (c) a is a convex set in a. We prove that up to conjugacy the face structure of E is completely determined by that of P and that a face of E is exposed if and only if the corresponding face of P is exposed. We apply these results to the convex hull of the image of a restricted1 momentum map.
引用
收藏
页码:423 / 441
页数:19
相关论文
共 50 条