Gradient-domain Volumetric Photon Density Estimation

被引:17
|
作者
Gruson, Adrien [1 ,2 ]
Binh-Son Hua [1 ,3 ]
Vibert, Nicolas [4 ]
Nowrouzezahrai, Derek [4 ]
Hachisuka, Toshiya [1 ]
机构
[1] Univ Tokyo, Tokyo, Japan
[2] CNRS, JFLI, UMI 3527, Tokyo, Japan
[3] Singapore Univ Technol & Design, Singapore, Singapore
[4] McGill Univ, Montreal, PQ, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 04期
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
gradient rendering; participating media;
D O I
10.1145/3197517.3201363
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Gradient-domain rendering can improve the convergence of surface-based light transport by exploiting smoothness in image space. Scenes with participating media exhibit similar smoothness and could potentially benefit from gradient-domain techniques. We introduce the first gradient-domain formulation of image synthesis with homogeneous participating media, including four novel and efficient gradient-domain volumetric density estimation algorithms. We show that naive extensions of gradient domain path-space and density estimation methods to volumetric media, while functional, can result in inefficient estimators. Focussing on point-, beam- and plane-based gradient-domain estimators, we introduce a novel shift mapping that eliminates redundancies in the naive formulations using spatial relaxation within the volume. We show that gradient-domain volumetric rendering improve convergence compared to primal domain state-of-the-art, across a suite of scenes. Our formulation and algorithms support progressive estimation and are easy to incorporate atop existing renderers.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Gradient-Domain Path Tracing with Gain Control Strategy
    He, Huaiqing
    Zhao, Yuzhen
    Liu, Haohan
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (02): : 294 - 304
  • [22] Improved Sampling for Gradient-Domain Metropolis Light Transport
    Manzi, Marco
    Rousselle, Fabrice
    Kettunen, Markus
    Lehtinen, Jaakko
    Zwicker, Matthias
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [23] Feature Generation for Adaptive Gradient-Domain Path Tracing
    Back, Jonghee
    Yoon, Sung-Eui
    Moon, Bochang
    COMPUTER GRAPHICS FORUM, 2018, 37 (07) : 65 - 74
  • [24] Distributed Gradient-Domain Processing of Planar and Spherical Images
    Kazhdan, Michael
    Surendran, Dinoj
    Hoppe, Hugues
    ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (02):
  • [25] Streaming multigrid for gradient-domain operations on large images
    Kazhdan, Michael
    Hoppe, Hugues
    ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [26] Joint Matting and Gradient-Domain Deringing for Image Deblurring
    Ren, Chunjian
    Liu, Xiaoqiang
    Zhang, Le
    Huang, Yaping
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 103 - 108
  • [27] Unsupervised Reconstruction for Gradient-Domain Rendering with Illumination Separation
    Ma, Ming-Cong
    Wang, Lu
    Xu, Yan-Ning
    Meng, Xiang-Xu
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 39 (06) : 1281 - 1291
  • [28] A Gradient-Domain Based Geometry Processing Framework for Point Clouds
    Qin, Hong-Xing
    He, Jin-Long
    Wang, Meng-Hui
    Dai, Yu
    Ran, Zhi-Yong
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2018, 33 (04) : 863 - 872
  • [29] A Gradient-Domain Based Geometry Processing Framework for Point Clouds
    Hong-Xing Qin
    Jin-Long He
    Meng-Hui Wang
    Yu Dai
    Zhi-Yong Ran
    Journal of Computer Science and Technology, 2018, 33 : 863 - 872
  • [30] Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches
    Manzi, M.
    Vicini, D.
    Zwicker, M.
    COMPUTER GRAPHICS FORUM, 2016, 35 (02) : 263 - 273