Unsupervised Reconstruction for Gradient-Domain Rendering with Illumination Separation

被引:0
|
作者
Ma, Ming-Cong [1 ]
Wang, Lu [1 ]
Xu, Yan-Ning [1 ]
Meng, Xiang-Xu [1 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
关键词
gradient-domain rendering; unsupervised network; deep learning; IMAGE-RECONSTRUCTION;
D O I
10.1007/s11390-024-3142-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Gradient-domain rendering methods can render higher-quality images at the same time cost compared with traditional ray tracing rendering methods, and, combined with the neural network, achieve better rendering quality than conventional screened Poisson reconstruction. However, it is still challenging for these methods to keep detailed information, especially in areas with complex indirect illumination and shadows. We propose an unsupervised reconstruction method that separates the direct rendering from the indirect, and feeds them into our unsupervised network with some corresponding auxiliary channels as two separated tasks. In addition, we introduce attention modules into our network which can further improve details. We finally combine the results of the direct and indirect illumination tasks to form the rendering results. Experiments show that our method significantly improves image quality details, especially in scenes with complex conditions.
引用
收藏
页码:1281 / 1291
页数:11
相关论文
共 50 条
  • [1] Unsupervised Image Reconstruction for Gradient-Domain Volumetric Rendering
    Xu, Zilin
    Sun, Qiang
    Wang, Lu
    Xu, Yanning
    Wang, Beibei
    COMPUTER GRAPHICS FORUM, 2020, 39 (07) : 193 - 203
  • [2] GradNet: Unsupervised Deep Screened Poisson Reconstruction for Gradient-Domain Rendering
    Guo, Jie
    Li, Mengtian
    Li, Quewei
    Qiang, Yuting
    Hu, Bingyang
    GUO, Yanwen
    Yan, Ling-Qi
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06):
  • [3] Deep Convolutional Reconstruction For Gradient-Domain Rendering
    Kettunen, Markus
    Harkonen, Erik
    Lehtinen, Jaakko
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [4] Adaptive sampling and reconstruction for gradient-domain rendering
    Liang, Yuzhi
    Liu, Tao
    Huo, Yuchi
    Wang, Rui
    Bao, Hujun
    COMPUTATIONAL VISUAL MEDIA, 2024, 10 (05) : 885 - 902
  • [5] A Survey on Gradient-Domain Rendering
    Hua, Binh-Son
    Gruson, Adrien
    Petitjean, Victor
    Zwicker, Matthias
    Nowrouzezahrai, Derek
    Eisemann, Elmar
    Hachisuka, Toshiya
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 455 - 472
  • [6] Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches
    Manzi, M.
    Vicini, D.
    Zwicker, M.
    COMPUTER GRAPHICS FORUM, 2016, 35 (02) : 263 - 273
  • [7] Gradient-Domain PET Reconstruction
    Magdics, Milan
    Szirmay-Kalos, Laszlo
    Neumann, Laszlo
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [8] Lossless Basis Expansion for Gradient-Domain Rendering
    Fang, Q.
    Hachisuka, T.
    COMPUTER GRAPHICS FORUM, 2024, 43 (04)
  • [9] Gradient-Domain Path Reusing
    Bauszat, Pablo
    Petitjean, Victor
    Eisemann, Elmar
    ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):
  • [10] Gradient-Domain Path Tracing
    Kettunen, Markus
    Manzi, Marco
    Aittala, Miika
    Lehtinen, Jaakko
    Durand, Fredo
    Zwicker, Matthias
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):