Adaptive sampling and reconstruction for gradient-domain rendering

被引:0
|
作者
Liang, Yuzhi [1 ]
Liu, Tao [2 ]
Huo, Yuchi [1 ]
Wang, Rui [1 ]
Bao, Hujun [1 ]
机构
[1] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Peoples R China
[2] Shanghai Maritime Univ, Coll Transport & Commun, Shanghai 201306, Peoples R China
关键词
gradient-domain rendering; adaptive rendering; Monte Carlo rendering; deep-learning-based Monte Carlo denoising;
D O I
10.1007/s41095-023-0361-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Gradient-domain rendering estimates finite difference gradients of image intensities and reconstructs the final result by solving a screened Poisson problem, which shows improvements over merely sampling pixel intensities. Adaptive sampling is another orthogonal research area that focuses on distributing samples adaptively in the primal domain. However, adaptive sampling in the gradient domain with low sampling budget has been less explored. Our idea is based on the observation that signals in the gradient domain are sparse, which provides more flexibility for adaptive sampling. We propose a deep-learning-based end-to-end sampling and reconstruction framework in gradient-domain rendering, enabling adaptive sampling gradient and the primal maps simultaneously. We conducted extensive experiments for evaluation and showed that our method produces better reconstruction quality than other methods in the test dataset.
引用
收藏
页码:885 / 902
页数:18
相关论文
共 50 条
  • [1] Deep Convolutional Reconstruction For Gradient-Domain Rendering
    Kettunen, Markus
    Harkonen, Erik
    Lehtinen, Jaakko
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [2] Unsupervised Image Reconstruction for Gradient-Domain Volumetric Rendering
    Xu, Zilin
    Sun, Qiang
    Wang, Lu
    Xu, Yanning
    Wang, Beibei
    COMPUTER GRAPHICS FORUM, 2020, 39 (07) : 193 - 203
  • [3] Unsupervised Reconstruction for Gradient-Domain Rendering with Illumination Separation
    Ma, Ming-Cong
    Wang, Lu
    Xu, Yan-Ning
    Meng, Xiang-Xu
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 39 (06) : 1281 - 1291
  • [4] A Survey on Gradient-Domain Rendering
    Hua, Binh-Son
    Gruson, Adrien
    Petitjean, Victor
    Zwicker, Matthias
    Nowrouzezahrai, Derek
    Eisemann, Elmar
    Hachisuka, Toshiya
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 455 - 472
  • [5] Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches
    Manzi, M.
    Vicini, D.
    Zwicker, M.
    COMPUTER GRAPHICS FORUM, 2016, 35 (02) : 263 - 273
  • [6] GradNet: Unsupervised Deep Screened Poisson Reconstruction for Gradient-Domain Rendering
    Guo, Jie
    Li, Mengtian
    Li, Quewei
    Qiang, Yuting
    Hu, Bingyang
    GUO, Yanwen
    Yan, Ling-Qi
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06):
  • [7] Gradient-Domain PET Reconstruction
    Magdics, Milan
    Szirmay-Kalos, Laszlo
    Neumann, Laszlo
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [8] Lossless Basis Expansion for Gradient-Domain Rendering
    Fang, Q.
    Hachisuka, T.
    COMPUTER GRAPHICS FORUM, 2024, 43 (04)
  • [9] Improved Sampling for Gradient-Domain Metropolis Light Transport
    Manzi, Marco
    Rousselle, Fabrice
    Kettunen, Markus
    Lehtinen, Jaakko
    Zwicker, Matthias
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [10] Feature Generation for Adaptive Gradient-Domain Path Tracing
    Back, Jonghee
    Yoon, Sung-Eui
    Moon, Bochang
    COMPUTER GRAPHICS FORUM, 2018, 37 (07) : 65 - 74