Programmed-1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes

被引:8
|
作者
Chang, Kai-Chun [1 ,2 ]
Wen, Jin-Der [3 ,4 ,5 ]
机构
[1] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, Sch Med, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, Sch Pharm, San Francisco, CA 94158 USA
[3] Natl Taiwan Univ, Inst Mol & Cellular Biol, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Genome & Syst Biol Degree Program, Taipei 10617, Taiwan
[5] Acad Sinica, Taipei 10617, Taiwan
关键词
Ribosomal frameshifting; Single-molecule; Optical tweezers; smFRET; MD simulation; Cryo-EM; AMINOACYL-TRANSFER-RNA; BACTERIAL RIBOSOME; SINGLE RIBOSOMES; NUCLEIC-ACIDS; HYBRID-STATE; PSEUDOKNOT; EFFICIENCY; MOVEMENT; TRANSLATION; TRANSLOCATION;
D O I
10.1016/j.csbj.2021.06.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programmed-1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote-1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:3580 / 3588
页数:9
相关论文
共 50 条
  • [41] The SARS-CoV-2 Programmed-1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
    Roman, Christina
    Lewicka, Anna
    Koirala, Deepak
    Li, Nan-Sheng
    Piccirilli, Joseph A.
    ACS CHEMICAL BIOLOGY, 2021, 16 (08) : 1469 - 1481
  • [42] Identification of putative programmed-1 ribosomal frameshift signals in large DNA databases
    Hammell, AB
    Taylor, RC
    Peltz, SW
    Dinman, JD
    GENOME RESEARCH, 1999, 9 (05) : 417 - 427
  • [43] Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae
    Jacobs, Jonathan L.
    Belew, Ashton T.
    Rakauskaite, Rasa
    Dinman, Jonathan D.
    NUCLEIC ACIDS RESEARCH, 2007, 35 (01) : 165 - 174
  • [44] Identification of a Cellular Factor That Modulates HIV-1 Programmed Ribosomal Frameshifting
    Kobayashi, Yoshifumi
    Zhuang, Jianling
    Peltz, Stuart
    Dougherty, Joseph
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (26) : 19776 - 19784
  • [45] Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed-1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element
    Li, Hongying
    Li, Jianrui
    Li, Jiayu
    Li, Hu
    Wang, Xuekai
    Jiang, Jing
    Lei, Lei
    Sun, Han
    Tang, Mei
    Dong, Biao
    He, Weiqing
    Si, Shuyi
    Hong, Bin
    Li, Yinghong
    Song, Danqing
    Peng, Zonggen
    Che, Yongsheng
    Jiang, Jian-Dong
    ACTA PHARMACEUTICA SINICA B, 2024, 14 (06) : 2567 - 2580
  • [46] Identifying Inhibitors of-1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses
    Munshi, Sneha
    Neupane, Krishna
    Ileperuma, Sandaru M.
    Halma, Matthew T. J.
    Kelly, Jamie A.
    Halpern, Clarissa F.
    Dinman, Jonathan D.
    Loerch, Sarah
    Woodside, Michael T.
    VIRUSES-BASEL, 2022, 14 (02):
  • [47] Programmed-2/-1 Ribosomal Frameshifting in Simarteriviruses: an Evolutionarily Conserved Mechanism
    Li, Yanhua
    Firth, Andrew E.
    Brierley, Ian
    Cai, Yingyun
    Napthine, Sawsan
    Wang, Tao
    Yan, Xingyu
    Kuhn, Jens H.
    Fang, Ying
    JOURNAL OF VIROLOGY, 2019, 93 (16)
  • [48] N1-methylpseudouridylation of mRNA causes+1 ribosomal frameshifting
    Mulroney, Thomas E.
    Poyry, Tuija
    Yam-Puc, Juan Carlos
    Rust, Maria
    Harvey, Robert F.
    Kalmar, Lajos
    Horner, Emily
    Booth, Lucy
    Ferreira, Alexander P.
    Stoneley, Mark
    Sawarkar, Ritwick
    Mentzer, Alexander J.
    Lilley, Kathryn S.
    Smales, C. Mark
    von der Haar, Tobias
    Turtle, Lance
    Dunachie, Susanna
    Klenerman, Paul
    Thaventhiran, James E. D.
    Willis, Anne E.
    NATURE, 2024, 625 (7993) : 189 - 194
  • [49] Expression of a MORN repeat protein from Euplotes octocarinatus requires a+1 programmed ribosomal frameshifting
    Wei, Lili
    Zhao, Xuemei
    Wang, Ruanlin
    Fu, Yuejun
    Chai, Baofeng
    Liang, Aihua
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2017, 81 (07) : 1327 - 1334
  • [50] eIF5A promotes+1 programmed ribosomal frameshifting in Euplotes octocarinatus
    Xiao, Yu
    Li, Jia
    Wang, Ruanlin
    Fan, Yajiao
    Han, Xiaxia
    Fu, Yuejun
    Alepuz, Paula
    Wang, Wei
    Liang, Aihua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254