Fuzzy-Bayesian network for refrigeration compressor performance prediction and test time reduction

被引:21
|
作者
Penz, Cesar A. [1 ]
Flesch, Carlos A. [1 ]
Nassar, Silvia M. [2 ]
Flesch, Rodolfo C. C. [3 ]
de Oliveira, Marco A. [4 ]
机构
[1] Univ Fed Santa Catarina, Dep Engn Mecanica, BR-88040970 Florianopolis, SC, Brazil
[2] Univ Fed Santa Catarina, Dep Informat & Estat, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Fed Santa Catarina, Dep Automacao & Sistemas, BR-88040900 Florianopolis, SC, Brazil
[4] Unidade EMBRACO, Whirlpool SA, BR-89219901 Joinville, SC, Brazil
关键词
Fuzzy-Bayesian networks; Refrigeration compressor; Performance test; Time reduction; Test prediction;
D O I
10.1016/j.eswa.2011.09.107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A typical characteristic of refrigeration compressor performance tests is their long duration. A reduction in the time periods related to this activity can be achieved using unsteady-state data analysis. This paper presents an original approach to predicting compressor performance using Bayesian networks and a hybrid Fuzzy-Bayesian network. All analysis was performed using real test data. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4268 / 4273
页数:6
相关论文
共 50 条
  • [31] Design of sparse Bayesian echo state network for time series prediction
    Wang, Lei
    Su, Zhong
    Qiao, Junfei
    Yang, Cuili
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12): : 7089 - 7102
  • [32] Time series prediction using optimal theorem and dynamic Bayesian network
    Xiao, Qinkun
    Xing, Li
    Song, Gao
    [J]. OPTIK, 2016, 127 (23): : 11063 - 11069
  • [33] Green Supply Chain Performance Prediction Using a Bayesian Belief Network
    Rabbi, Md
    Ali, Syed Mithun
    Kabir, Golam
    Mahtab, Zuhayer
    Paul, Sanjoy Kumar
    [J]. SUSTAINABILITY, 2020, 12 (03)
  • [34] Dynamic Bayesian network based prediction of performance parameters in cloud computing
    Bharti, Priyanka
    Ranjan, Rajeev
    [J]. INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (04) : 368 - 381
  • [35] Bayesian inference of network loss characteristics with applications to TCP performance prediction
    Guo, D
    Wang, XD
    [J]. PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 530 - 533
  • [36] Risk prediction of road traffic sign occlusion failure based on fuzzy Bayesian network
    Dong, Q.
    [J]. Advances in Transportation Studies, 2021, 2021 (Special issue 1): : 125 - 134
  • [37] Modeling System Based on Fuzzy Dynamic Bayesian Network for Fault Diagnosis and Reliability Prediction
    Yao, J. Y.
    Li, J.
    Li, Honzhi
    Wang, Xiangfen
    [J]. 2015 61ST ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2015), 2015,
  • [38] Measurement aided 3G radio network prediction:: Fuzzy Bayesian framework
    Nouir, Zakaria
    Sayrac, Berna
    Fourestie, Benoit
    Tabbara, Walid
    Brouaye, Francoise
    [J]. 2007 IEEE 65TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6, 2007, : 715 - 719
  • [39] Performance Analysis for NFBN-A New Fuzzy Bayesian Network Learning Approach
    Das, Monidipa
    Ghosh, Soumya K.
    [J]. RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 363 - 376
  • [40] Neural-network based analysis and prediction of a compressor's characteristic performance map
    Yu, Youhong
    Chen, Lingen
    Sun, Fengrui
    Wu, Chih
    [J]. APPLIED ENERGY, 2007, 84 (01) : 48 - 55