Fuzzy-Bayesian network for refrigeration compressor performance prediction and test time reduction

被引:21
|
作者
Penz, Cesar A. [1 ]
Flesch, Carlos A. [1 ]
Nassar, Silvia M. [2 ]
Flesch, Rodolfo C. C. [3 ]
de Oliveira, Marco A. [4 ]
机构
[1] Univ Fed Santa Catarina, Dep Engn Mecanica, BR-88040970 Florianopolis, SC, Brazil
[2] Univ Fed Santa Catarina, Dep Informat & Estat, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Fed Santa Catarina, Dep Automacao & Sistemas, BR-88040900 Florianopolis, SC, Brazil
[4] Unidade EMBRACO, Whirlpool SA, BR-89219901 Joinville, SC, Brazil
关键词
Fuzzy-Bayesian networks; Refrigeration compressor; Performance test; Time reduction; Test prediction;
D O I
10.1016/j.eswa.2011.09.107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A typical characteristic of refrigeration compressor performance tests is their long duration. A reduction in the time periods related to this activity can be achieved using unsteady-state data analysis. This paper presents an original approach to predicting compressor performance using Bayesian networks and a hybrid Fuzzy-Bayesian network. All analysis was performed using real test data. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4268 / 4273
页数:6
相关论文
共 50 条
  • [21] Test of refrigeration performance for inverter air source heat pumps based on dual-cylinder rotary compressor
    双缸转子压缩机变频空气源热泵制冷性能测试
    Yin, Yingde (yinyingde@guet.edu.cn); Yin, Yingde (yinyingde@guet.edu.cn); Yin, Yingde (yinyingde@guet.edu.cn), 2021, Science Press (42): : 19 - 25
  • [22] NORMALISATION OF TEST RESULTS IN AIR SCREW COMPRESSOR MEASUREMENTS AS A BASIS FOR PERFORMANCE ESTIMATION OF REFRIGERATION AND PROCESS GAS COMPRESSORS
    Stosic, Nikola
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B, 2012, : 735 - 739
  • [23] Enhancing the Prediction Performance of Real-Time Crash Prediction Models: A Cell Transmission-Dynamic Bayesian Network Approach
    Roy, Ananya
    Hossain, Moinul
    Muromachi, Yasunori
    TRANSPORTATION RESEARCH RECORD, 2018, 2672 (38) : 58 - 68
  • [24] Fuzzy time series prediction method based on fuzzy recurrent neural network
    Aliev, Rafik
    Fazlollahi, Bijan
    Aliev, Rashad
    Guirimov, Babek
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 860 - 869
  • [25] Prediction of performance parameters of a hermetic reciprocating compressor applying an artificial neural network
    Bacak, Aykut
    Colak, Andac Batur
    Dalkilic, Ahmet Selim
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024,
  • [26] Bayesian heterogeneous assembly time modeling for robotic performance prediction
    Li, Mingyang
    Sun, Xuxue
    Liang, Guoyuan
    Shen, Yingjun
    Zhang, Qingpeng
    Feng, Yachun
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2021, 15 (01)
  • [27] Bayesian reliability prediction of gear drive based on fuzzy life time data
    Sun, ZQ
    Huang, HZ
    Wu, WD
    Liu, ZH
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF DESIGN AND MANUFACTURING, VOL 1, 2002, : 522 - 525
  • [28] Time series prediction using bayesian filtering model and fuzzy neural networks
    Xiao, Qinkun
    OPTIK, 2017, 140 : 104 - 113
  • [29] Applying hierarchical Bayesian neural network approach in failure time prediction
    Chin, CC
    Liaw, CY
    Wu, CM
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2005, : 205 - 208
  • [30] Design of sparse Bayesian echo state network for time series prediction
    Wang, Lei
    Su, Zhong
    Qiao, Junfei
    Yang, Cuili
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12): : 7089 - 7102