Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture

被引:100
|
作者
Sweeting, Michael J. [1 ]
Thompson, Simon G. [1 ]
机构
[1] Inst Publ Hlth, MRC Biostat Unit, Cambridge CB2 0SR, England
基金
英国医学研究理事会;
关键词
Abdominal aortic aneurysm; Hierarchical model; Joint model; Prediction; Shared random effects; SURVIVAL; ERROR;
D O I
10.1002/bimj.201100052
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Shared random effects joint models are becoming increasingly popular for investigating the relationship between longitudinal and time-to-event data. Although appealing, such complex models are computationally intensive, and quick, approximate methods may provide a reasonable alternative. In this paper, we first compare the shared random effects model with two approximate approaches: a naive proportional hazards model with time-dependent covariate and a two-stage joint model, which uses plug-in estimates of the fitted values from a longitudinal analysis as covariates in a survival model. We show that the approximate approaches should be avoided since they can severely underestimate any association between the current underlying longitudinal value and the event hazard. We present classical and Bayesian implementations of the shared random effects model and highlight the advantages of the latter for making predictions. We then apply the models described to a study of abdominal aortic aneurysms (AAA) to investigate the association between AAA diameter and the hazard of AAA rupture. Out-of-sample predictions of future AAA growth and hazard of rupture are derived from Bayesian posterior predictive distributions, which are easily calculated within an MCMC framework. Finally, using a multivariate survival sub-model we show that underlying diameter rather than the rate of growth is the most important predictor of AAA rupture.
引用
收藏
页码:750 / 763
页数:14
相关论文
共 50 条
  • [21] Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
    Anja Rappl
    Thomas Kneib
    Stefan Lang
    Elisabeth Bergherr
    Statistics and Computing, 2023, 33
  • [22] Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
    Rappl, Anja
    Kneib, Thomas
    Lang, Stefan
    Bergherr, Elisabeth
    STATISTICS AND COMPUTING, 2023, 33 (06)
  • [23] A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    Song, X
    Davidian, M
    Tsiatis, AA
    BIOMETRICS, 2002, 58 (04) : 742 - 753
  • [24] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Molei Liu
    Jiehuan Sun
    Jose D. Herazo-Maya
    Naftali Kaminski
    Hongyu Zhao
    Statistics in Biosciences, 2019, 11 : 614 - 629
  • [25] A flexible joint modeling framework for longitudinal and time-to-event data with overdispersion
    Njagi, Edmund N.
    Molenberghs, Geert
    Rizopoulos, Dimitris
    Verbeke, Geert
    Kenward, Michael G.
    Dendale, Paul
    Willekens, Koen
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1661 - 1676
  • [26] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    Journal of Computational and Applied Mathematics, 2021, 381
  • [27] Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension
    Liu, Molei
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    STATISTICS IN BIOSCIENCES, 2019, 11 (03) : 614 - 629
  • [28] Bayesian Approach for Joint Longitudinal and Time-to-Event Data with Survival Fraction
    Abu Bakar, Mohd Rizam
    Salah, Khalid A.
    Ibrahim, Noor Akma
    Haron, Kassim
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (01) : 75 - 100
  • [29] Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues
    Graeme L. Hickey
    Pete Philipson
    Andrea Jorgensen
    Ruwanthi Kolamunnage-Dona
    BMC Medical Research Methodology, 16
  • [30] A Bayesian joint model for multivariate longitudinal and time-to-event data with application to ALL maintenance studies
    Kundu, Damitri
    Sarkar, Partha
    Das, Kiranmoy
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023,