Self-assembling prodrugs

被引:285
|
作者
Cheetham, Andrew G. [1 ,2 ]
Chakroun, Rami W. [2 ]
Ma, Wang [1 ]
Cui, Honggang [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhengzhou Univ, Dept Oncol, Affiliated Hosp 1, 1 Jianshe Eastern Rd, Zhengzhou 450052, Henan, Peoples R China
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Oncol, Sch Med, Baltimore, MD 21205 USA
[4] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Wilmer Eye Inst, Ctr Nanomed, Sch Med, 400 North Broadway, Baltimore, MD 21231 USA
[6] Johns Hopkins Univ, Dept Mat Sci & Engn, 3400 N Charles St, Baltimore, MD 21218 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SUPRAMOLECULAR FILAMENT HYDROGELS; INCORPORATED POLYMERIC MICELLES; ENZYMATICALLY DEGRADABLE BONDS; RING-OPENING POLYMERIZATION; TRIGGERED DRUG-RELEASE; METAL COMPLEX MICELLE; ACID) BLOCK-COPOLYMER; PHASE-I; GLYCOL-CHITOSAN; DOXORUBICIN CONJUGATE;
D O I
10.1039/c7cs00521k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
引用
收藏
页码:6638 / 6663
页数:26
相关论文
共 50 条
  • [41] SELF-ASSEMBLING CATENANES AND ROTAXANES
    PASINI, D
    RAYMO, FM
    STODDART, JF
    [J]. GAZZETTA CHIMICA ITALIANA, 1995, 125 (09): : 431 - 443
  • [42] SELF-ASSEMBLING [2]PSEUDOROTAXANES
    ANELLI, PL
    ASHTON, PR
    SPENCER, N
    SLAWIN, AMZ
    STODDART, JF
    WILLIAMS, DJ
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1991, 30 (08) : 1036 - 1039
  • [43] Self-assembling DNA graphs
    Phiset Sa-Ardyen
    Natašsa Jonoska
    Nadrian C. Seeman
    [J]. Natural Computing, 2003, 2 (4) : 427 - 438
  • [44] Self-assembling surfactant systems
    Candau, SJ
    Lequeux, F
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1997, 2 (04) : 420 - 423
  • [45] SELF-ASSEMBLING DISCOTIC MESOGENS
    KLEPPINGER, R
    LILLYA, CP
    YANG, CQ
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (15): : 1637 - 1638
  • [46] Self-assembling resists for nanolithography
    Nealey, PF
    Edwards, EW
    Müller, M
    Stoykovich, MP
    Solak, HH
    de Pablo, JJ
    [J]. IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2005, TECHNICAL DIGEST, 2005, : 367 - 370
  • [47] Self-assembling fluidic machines
    Grzybowski, BA
    Radkowski, M
    Campbell, CJ
    Lee, JN
    Whitesides, GM
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (10) : 1798 - 1800
  • [48] SELF-ASSEMBLING PHOSPHOLIPID FILAMENTS
    RATNA, BR
    RUDOLPH, AS
    KAHN, B
    [J]. FASEB JOURNAL, 1992, 6 (01): : A129 - A129
  • [49] Self-assembling nanostructures dissevered
    不详
    [J]. MATERIALS PERFORMANCE, 2000, 39 (02) : 12 - 12
  • [50] SELF-ASSEMBLING PHOSPHOLIPID FILAMENTS
    RUDOLPH, AS
    RATNA, BR
    KAHN, B
    [J]. NATURE, 1991, 352 (6330) : 52 - 55