Optimal estimation and Cramer-Rao bounds for partial non-gaussian state space models

被引:31
|
作者
Bergman, N
Doucet, A
Gordon, N
机构
[1] Linkoping Univ, Div Automat Control, S-58183 Linkoping, Sweden
[2] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
[3] Def Evaluat & Res Agcy, Malvern WR14 3PS, Worcs, England
关键词
optimal estimation; Bayesian inference; sequential Monte Carlo methods; posterior Cramer-Rao bounds;
D O I
10.1023/A:1017920621802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial non-Gaussian state-space models include many models of interest while keeping a convenient analytical structure. In this paper, two problems related to partial non-Gaussian models are addressed. First, we present an efficient sequential Monte Carlo method to perform Bayesian inference. Second, we derive simple recursions to compute posterior Cramer-Rao bounds (PCRB). An application to jump Markov linear systems (JMLS) is given.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 50 条
  • [31] CRAMER-RAO BOUNDS AND ESTIMATION ALGORITHMS FOR DELAYIDOPPLER AND CONVENTIONAL ALTIMETRY
    Halimi, A.
    Mailhes, C.
    Tourneret, J. -Y
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [32] Approximating Posterior Cramer-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models
    Zhang, Shuo
    Chen, Defeng
    Fu, Tuo
    Cao, Huawei
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (02) : 984 - 1001
  • [33] Cramer Rao maximum a-posteriori bounds for a finite number of non-Gaussian parameters
    Hsieh, CH
    Manry, MT
    Chen, HH
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 1161 - 1165
  • [34] On Constrained Modified Cramer-Rao Lower Bounds for Non-Standard Deterministic Estimation
    Galy, Jerome
    Bacharrach, Lucien
    Chaumette, Eric
    Vincent, Francois
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 650 - 654
  • [35] Network Localization Cramer-Rao Bounds for General Measurement Models
    Alevizos, Panos N.
    Bletsas, Aggelos
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (09) : 1840 - 1843
  • [36] Parameter estimation and Cramer-Rao lower bounds in non-contact temperature measurement
    Exel, Dominik
    Zagar, Bernhard
    Schuster, Stefan
    Gangiberger, Vera
    Reisinger, Johann
    TM-TECHNISCHES MESSEN, 2019, 86 (01) : 45 - 56
  • [37] CRAMER-RAO BOUNDS FOR PARAMETER ESTIMATION OF PHASE-CODING SIGNALS
    Huang Chunlin Jiang Wengli Zhou Yiyu School of Electronic Science and Engineering NUDT Changsha China
    JournalofElectronics, 2005, (01) : 1 - 8
  • [38] Assessment of Cramer-Rao Lower Bounds of WLAN User Location Estimation
    Naik, Udaykumar
    Bapat, Vishram N.
    2014 IEEE GLOBAL CONFERENCE ON WIRELESS COMPUTING AND NETWORKING (GCWCN), 2014, : 129 - 132
  • [39] Cramer-Rao bounds for estimation of turbulence-induced wavefront aberrations
    Schulz, TJ
    Sun, W
    Roggemann, MC
    PROPAGATION AND IMAGING THROUGH THE ATMOSPHERE III, 1999, 3763 : 23 - 28
  • [40] The Estimation Fusion and Cramer-Rao Bounds for Nonlinear Systems with Uncertain Observations
    Wang, Ping
    Wang, Zhiguo
    Shen, Xiaojing
    Zhu, Yunmin
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 346 - 353