Approximating Posterior Cramer-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models

被引:4
|
作者
Zhang, Shuo [1 ]
Chen, Defeng [1 ]
Fu, Tuo [1 ]
Cao, Huawei [1 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Monte Carlo methods; AWGN; Uncertainty; Target tracking; Computational modeling; Gaussian mixture model; Gaussian mixture model (GMM); nonlinear state estimation; posterior Cramé r– Rao bound (PCRB); target tracking; SUM FILTERS; PCRLB;
D O I
10.1109/TAES.2020.3035426
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The posterior Cramer-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.
引用
收藏
页码:984 / 1001
页数:18
相关论文
共 50 条
  • [1] Posterior Cramer-Rao bounds for discrete-time nonlinear filtering
    Tichavsky, P
    Muravchik, CH
    Nehorai, A
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) : 1386 - 1396
  • [2] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Recursive Filtering
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1528 - 1535
  • [3] CRAMER-RAO BOUNDS FOR DISCRETE-TIME NONLINEAR FILTERING PROBLEMS
    DOERSCHUK, PC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (08) : 1465 - 1469
  • [4] Cramer-Rao Bounds for Filtering Based on Gaussian Process State-Space Models
    Zhao, Yuxin
    Fritsche, Carsten
    Hendeby, Gustaf
    Yin, Feng
    Chen, Tianshi
    Gunnarsson, Fredrik
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) : 5936 - 5951
  • [5] CRAMER-RAO BOUNDS FOR POSTERIOR VARIANCES
    GHOSH, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 17 (03) : 173 - 178
  • [6] Posterior Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering with Finitely Correlated Noises
    Wang, Zhiguo
    Shen, Xiaojing
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 4541 - 4546
  • [7] Posterior Cramer-Rao Bounds for Nonlinear Dynamic System with Colored Noises
    Wang, Zhiguo
    Shen, Xiaojing
    Zhu, Yunmin
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (06) : 1526 - 1543
  • [8] Multisensor resource deployment using posterior Cramer-Rao bounds
    Hernandez, ML
    Kirubarajan, T
    Bar-Shalom, Y
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2004, 40 (02) : 399 - 416
  • [9] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 1 - 14
  • [10] Posterior Cramer-Rao Lower Bounds for Extended Target Tracking with Gaussian Process PMHT
    Tang, Xu
    Li, Mingyan
    Tharmarasa, Ratnasingham
    Kirubarajan, Thia
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,