Approximating Posterior Cramer-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models

被引:6
|
作者
Zhang, Shuo [1 ]
Chen, Defeng [1 ]
Fu, Tuo [1 ]
Cao, Huawei [1 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Monte Carlo methods; AWGN; Uncertainty; Target tracking; Computational modeling; Gaussian mixture model; Gaussian mixture model (GMM); nonlinear state estimation; posterior Cramé r– Rao bound (PCRB); target tracking; SUM FILTERS; PCRLB;
D O I
10.1109/TAES.2020.3035426
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The posterior Cramer-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.
引用
收藏
页码:984 / 1001
页数:18
相关论文
共 50 条
  • [31] Posterior Cramer-Rao lower bounds for bearing-only tracking
    Guo Lei1
    2. National Key Laboratory of Information Integrated Control
    Journal of Systems Engineering and Electronics, 2008, (01) : 27 - 32
  • [32] A Comparison of Posterior Cramer-Rao Bounds for Point and Extended Target Tracking
    Zhong, Zhiwen
    Meng, Huadong
    Wang, Xiqin
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (10) : 819 - 822
  • [33] Network Localization Cramer-Rao Bounds for General Measurement Models
    Alevizos, Panos N.
    Bletsas, Aggelos
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (09) : 1840 - 1843
  • [34] The Estimation Fusion and Cramer-Rao Bounds for Nonlinear Systems with Uncertain Observations
    Wang, Ping
    Wang, Zhiguo
    Shen, Xiaojing
    Zhu, Yunmin
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 346 - 353
  • [35] The Cramer-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations
    Wang, Zhiguo
    Shen, Xiaojing
    Wang, Ping
    Zhu, Yunmin
    SENSORS, 2018, 18 (04)
  • [36] Cramer-Rao lower bounds for inverse scattering problems of multilayer structures
    Gustafsson, Mats
    Nordebo, Sven
    INVERSE PROBLEMS, 2006, 22 (04) : 1359 - 1380
  • [37] Posterior Cramer-Rao lower bounds for multitarget bearings-only tracking
    Guo Lei~(1
    2.National Key Laboratory of Information Integrated Control
    Journal of Systems Engineering and Electronics, 2008, 19 (06) : 1127 - 1132
  • [38] The Effect of Sensor Modality on Posterior Cramer-Rao Bounds for Simultaneous Localisation and Mapping
    Selvaratnam, Daniel D.
    Shames, Iman
    Ristic, Branko
    Manton, Jonathan H.
    IFAC PAPERSONLINE, 2016, 49 (15): : 242 - 247
  • [39] Online Estimation of the Approximate Posterior Cramer-Rao Lower Bound for Discrete-Time Nonlinear Filtering
    Lei, Ming
    van Wyk, Barend J.
    Qi, Yong
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (01) : 37 - 57
  • [40] Cramer-Rao Bounds for a Coupled Mixture of Polynomial Phase and Sinusoidal FM Signals
    Wang, Pu
    Orlik, Philip V.
    Sadamoto, Kota
    Tsujita, Wataru
    Sawa, Yoshitsugu
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 267 - 271