Identifying Influential Nodes in Complex Networks Based on Node Itself and Neighbor Layer Information

被引:19
|
作者
Zhu, Jingcheng [1 ]
Wang, Lunwen [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Engn, Hefei 230037, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 09期
关键词
complex network; node influence; neighbor layer information; SIR model; CENTRALITY; SPREADERS; COMMUNITY; DENSITY;
D O I
10.3390/sym13091570
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying influential nodes in complex networks is of great significance for clearly understanding network structure and maintaining network stability. Researchers have proposed many classical methods to evaluate the propagation impact of nodes, but there is still some room for improvement in the identification accuracy. Degree centrality is widely used because of its simplicity and convenience, but it has certain limitations. We divide the nodes into neighbor layers according to the distance between the surrounding nodes and the measured node. Considering that the node's neighbor layer information directly affects the identification result, we propose a new node influence identification method by combining degree centrality information about itself and neighbor layer nodes. This method first superimposes the degree centrality of the node itself with neighbor layer nodes to quantify the effect of neighbor nodes, and then takes the nearest neighborhood several times to characterize node influence. In order to evaluate the efficiency of the proposed method, the susceptible-infected-recovered (SIR) model was used to simulate the propagation process of nodes on multiple real networks. These networks are unweighted and undirected networks, and the adjacency matrix of these networks is symmetric. Comparing the calculation results of each method with the results obtained by SIR model, the experimental results show that the proposed method is more effective in determining the node influence than seven other identification methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Identifying influential nodes in complex networks based on spreading probability
    Ai, Jun
    He, Tao
    Su, Zhan
    Shang, Lihui
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [12] Identifying influential nodes in complex networks based on Neighbours and edges
    Zengzhen Shao
    Shulei Liu
    Yanyu Zhao
    Yanxiu Liu
    Peer-to-Peer Networking and Applications, 2019, 12 : 1528 - 1537
  • [13] LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality
    Zhang, Haotian
    Zhong, Shen
    Deng, Yong
    Cheong, Kang Hao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 3284 - 3296
  • [14] Identifying influential nodes based on graph signal processing in complex networks
    赵佳
    喻莉
    李静茹
    周鹏
    Chinese Physics B, 2015, 24 (05) : 643 - 652
  • [15] Identifying Influential Nodes in Complex Networks Based on Neighborhood Entropy Centrality
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    Zhang, Shuang
    COMPUTER JOURNAL, 2021, 64 (10): : 1465 - 1476
  • [16] Identifying influential nodes in complex networks based on global and local structure
    Sheng, Jinfang
    Dai, Jinying
    Wang, Bin
    Duan, Guihua
    Long, Jun
    Zhang, Junkai
    Guan, Kerong
    Hu, Sheng
    Chen, Long
    Guan, Wanghao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [17] A new method of identifying influential nodes in complex networks based on TOPSIS
    Du, Yuxian
    Gao, Cai
    Hu, Yong
    Mahadevan, Sankaran
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 : 57 - 69
  • [18] Identifying Influential Nodes in Complex Networks Based on Local Effective Distance
    Zhang, Junkai
    Wang, Bin
    Sheng, Jinfang
    Dai, Jinying
    Hu, Jie
    Chen, Long
    INFORMATION, 2019, 10 (10)
  • [19] Identifying influential nodes based on network representation learning in complex networks
    Wei, Hao
    Pan, Zhisong
    Hu, Guyu
    Zhang, Liangliang
    Yang, Haimin
    Li, Xin
    Zhou, Xingyu
    PLOS ONE, 2018, 13 (07):
  • [20] Identifying influential nodes based on fuzzy local dimension in complex networks
    Wen, Tao
    Jiang, Wen
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 332 - 342