Identifying influential nodes based on fuzzy local dimension in complex networks

被引:40
|
作者
Wen, Tao [1 ]
Jiang, Wen [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex networks; Influential nodes; Local dimension; Fuzzy sets; Centrality measure; ANT COLONY OPTIMIZATION; INFORMATION DIMENSION; FRACTAL DIMENSION; NEURAL-NETWORKS; HUMAN MOBILITY; UNCERTAINTY; CENTRALITY; DESIGN; LOGIC; DYNAMICS;
D O I
10.1016/j.chaos.2019.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How to identify influential nodes in complex networks is an important aspect in the study of complex network. In this paper, a novel fuzzy local dimension (FLD) is proposed to rank the influential nodes in complex networks, where a node with high fuzzy local dimension has high influential ability. This proposed method focuses on the influence of the distance from the center node on the local dimension of center node by fuzzy set, resulting in a change in influential ability. In order to show this proposed method's effectiveness and accuracy, four real-world networks are applied in this paper. Meanwhile, Susceptible-Infected (SI) is used to simulate the spreading process by FLD and other centrality measures, and Kendall's tau coefficient is used to describe the correlation between the influential nodes obtained by centrality and the results measured by SI model. Observing from the ranking lists and simulated results, this method is effective and accurate to rank the influential nodes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:332 / 342
页数:11
相关论文
共 50 条
  • [1] Identifying influential nodes based on local dimension
    Pu, Jun
    Chen, Xiaowu
    Wei, Daijun
    Liu, Qi
    Deng, Yong
    [J]. EPL, 2014, 107 (01)
  • [2] LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality
    Zhang, Haotian
    Zhong, Shen
    Deng, Yong
    Cheong, Kang Hao
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 3284 - 3296
  • [3] Identifying influential nodes in complex networks based on global and local structure
    Sheng, Jinfang
    Dai, Jinying
    Wang, Bin
    Duan, Guihua
    Long, Jun
    Zhang, Junkai
    Guan, Kerong
    Hu, Sheng
    Chen, Long
    Guan, Wanghao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [4] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    [J]. IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [5] Identifying Influential Nodes in Complex Networks Based on Local Effective Distance
    Zhang, Junkai
    Wang, Bin
    Sheng, Jinfang
    Dai, Jinying
    Hu, Jie
    Chen, Long
    [J]. INFORMATION, 2019, 10 (10)
  • [6] Identifying influential nodes in complex networks: A node information dimension approach
    Bian, Tian
    Deng, Yong
    [J]. CHAOS, 2018, 28 (04)
  • [7] Identifying influential nodes in complex networks based on AHP
    Bian, Tian
    Hu, Jiantao
    Deng, Yong
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 479 : 422 - 436
  • [8] Identifying influential nodes in complex networks
    Chen, Duanbing
    Lu, Linyuan
    Shang, Ming-Sheng
    Zhang, Yi-Cheng
    Zhou, Tao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1777 - 1787
  • [9] Identification of influential nodes in complex networks: A local degree dimension approach
    Zhong, Shen
    Zhang, Haotian
    Deng, Yong
    [J]. INFORMATION SCIENCES, 2022, 610 : 994 - 1009
  • [10] Identifying influential nodes in complex networks based on network embedding and local structure entropy
    Lu, Pengli
    Yang, Junxia
    Zhang, Teng
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (08):