Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods

被引:21
|
作者
Yin, Xiaobo [1 ]
Xie, Hehu [1 ]
Jia, Shanghui [2 ]
Gao, Shaoqin [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100080, Peoples R China
[2] Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R China
[3] Hebei Univ, Coll Math & Comp, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
mixed finite element; stokes eigenvalue problem; asymptotic expansion; extrapolation;
D O I
10.1016/j.cam.2007.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives a general procedure to produce an asymptotic expansion for eigenvalues of the Stokes problem by mixed finite elements. By means of integral expansion technique, the asymptotic error expansions for the approximations of the Stokes eigenvalue problem by Bernadi-Raugel element and Q(2) - P-1 element are given. Based on such expansions, the extrapolation technique is applied to improve the accuracy of the approximations. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 50 条