Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods

被引:21
|
作者
Yin, Xiaobo [1 ]
Xie, Hehu [1 ]
Jia, Shanghui [2 ]
Gao, Shaoqin [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100080, Peoples R China
[2] Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R China
[3] Hebei Univ, Coll Math & Comp, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
mixed finite element; stokes eigenvalue problem; asymptotic expansion; extrapolation;
D O I
10.1016/j.cam.2007.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives a general procedure to produce an asymptotic expansion for eigenvalues of the Stokes problem by mixed finite elements. By means of integral expansion technique, the asymptotic error expansions for the approximations of the Stokes eigenvalue problem by Bernadi-Raugel element and Q(2) - P-1 element are given. Based on such expansions, the extrapolation technique is applied to improve the accuracy of the approximations. (C) 2007 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:127 / 141
页数:15
相关论文
共 50 条
  • [21] Convergence of a mixed finite element for the Stokes problem on anisotropic meshes
    Li, Qingshan
    Sun, Huixia
    Chen, Shaochun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (05) : 740 - 755
  • [22] ANALYSIS OF FULLY-MIXED FINITE ELEMENT METHODS FOR THE STOKES-DARCY COUPLED PROBLEM
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sayas, Francisco-Javier
    MATHEMATICS OF COMPUTATION, 2011, 80 (276) : 1911 - 1948
  • [23] Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods
    Jia, Shanghui
    Li, Deli
    Zhang, Shuhua
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (04) : 337 - 356
  • [24] Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods
    Shanghui Jia
    Deli Li
    Shuhua Zhang
    Advances in Computational Mathematics, 2008, 29 : 337 - 356
  • [25] ASYMPTOTIC EXPANSIONS OF STOKES FLOWS IN FINITE PERIODIC CHANNELS
    Feppon, Florian
    Multiscale Modeling and Simulation, 2025, 23 (01): : 218 - 254
  • [26] AUGMENTED MIXED FINITE ELEMENT METHODS FOR THE STATIONARY STOKES EQUATIONS
    Figueroa, Leonardo E.
    Gatica, Gabriel N.
    Marquez, Antonio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02): : 1082 - 1119
  • [27] A taxonomy of consistently stabilized finite element methods for the Stokes problem
    Barth, T
    Bochev, P
    Gunzburger, M
    Shadid, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1585 - 1607
  • [28] Finite element methods for the Stokes problem in R3
    Hong, S
    Lee, S
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 127 - 132
  • [29] Three-dimensional finite element methods for the Stokes problem
    Boffi, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) : 664 - 670
  • [30] ON THE ERROR ANALYSIS OF STABILIZED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM
    Stenberg, Rolf
    Videman, Juha
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (06) : 2626 - 2633