Stability window of trapless polariton Bose-Einstein condensates

被引:2
|
作者
Sabari, S. [1 ,2 ]
Kumar, R. Kishor [3 ,4 ]
Radha, R. [2 ]
Muruganandam, P. [5 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Theoret Phys, BR-01156970 Sao Paulo, SP, Brazil
[2] Govt Coll Women, Dept Phys, Ctr Nonlinear Sci CeNSc, Kumbakonam 612001, India
[3] Univ Otago, Dept Phys, Ctr Quantum Sci, Dunedin 9054, New Zealand
[4] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9054, New Zealand
[5] Bharathidasan Univ, Dept Phys, Tiruchirappalli 620024, India
基金
巴西圣保罗研究基金会;
关键词
SOLITONS;
D O I
10.1103/PhysRevB.105.224315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically explore the possibility of stabilizing the trapless polariton Bose-Einstein condensates (pBECs). Exploiting the variational method, we solve the associated nonlinear, complex Gross-Pitaevskii equation and derive the equation of motion for the amplitude and width of the condensate. These variational results described by ordinary differential equations are rewritten to perform a linear stability analysis to generate a stability window in the repulsive domain. A set of coupled nonlinear ordinary differential equations obtained through the variational approach are then solved by numerical simulations through the fourth-order Runge-Kutta method, which are further supported by the split-step Crank-Nicholson method, thereby setting the platform for stable pBECs. In particular, we generate a window containing system parameters in the g(1) - gamma(eff) space within which the system can admit stable condensates. The highlight of the results is that one observes beating effects in the real time evolution of the condensates with attractive interactions much similar to multicomponent BECs, and their periodicity can be varied by manipulating linear and nonlinear loss/gain terms. For repulsive condensates, one notices the stretching of the density.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Rotating Bose-Einstein condensates
    Mottelson, B
    NUCLEAR PHYSICS A, 2001, 690 (1-3) : 201C - 208C
  • [42] CONSCIOUSNESS AND BOSE-EINSTEIN CONDENSATES
    MARSHALL, IN
    NEW IDEAS IN PSYCHOLOGY, 1989, 7 (01) : 73 - 83
  • [43] Bose-Einstein condensates in superlattices
    Porter, MA
    Kevrekidis, PG
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 783 - 807
  • [44] Studies of Bose-Einstein Condensates
    M. R. Andrews
    D. S. Durfee
    S. Inouye
    D. M. Stamper-Kurn
    H.-J. Miesner
    W. Ketterle
    Journal of Low Temperature Physics, 1998, 110 : 153 - 166
  • [45] CONDENSATES AND BOSE-EINSTEIN CORRELATIONS
    FOWLER, GN
    STELTE, N
    WEINER, RM
    NUCLEAR PHYSICS A, 1979, 319 (03) : 349 - 363
  • [46] Dephasing of bose-einstein condensates
    Fachbereich Physik, Universitat-Gesamthochschule Essen, 45117 Essen, Germany
    Journal of Modern Optics, 2000, 47 (14-15 SPEC.) : 2615 - 2627
  • [47] Bose-Einstein condensates in microgravity
    Vogel, A.
    Schmidt, M.
    Sengstock, K.
    Bongs, K.
    Lewoczko, W.
    Schuldt, T.
    Peters, A.
    Van Zoest, T.
    Ertmer, W.
    Rasel, E.
    Steinmetz, T.
    Reichel, J.
    Koenemann, T.
    Brinkmann, W.
    Goeklue, E.
    Laemmerzahl, C.
    Dittus, H. J.
    Nandi, G.
    Schleich, W. P.
    Walser, R.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 84 (04): : 663 - 671
  • [48] Waveguide for Bose-Einstein condensates
    Bongs, K.
    Burger, S.
    Dettmer, S.
    Hellweg, D.
    Arlt, J.
    Ertmer, W.
    Sengstock, K.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 316021 - 316024
  • [49] Polymer Bose-Einstein condensates
    Castellanos, E.
    Chacon-Acosta, G.
    PHYSICS LETTERS B, 2013, 722 (1-3) : 119 - 122
  • [50] Calorimetry of Bose-Einstein condensates
    Blakie, P. B.
    Toth, E.
    Davis, M. J.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (16) : 3273 - 3282