Stability window of trapless polariton Bose-Einstein condensates

被引:2
|
作者
Sabari, S. [1 ,2 ]
Kumar, R. Kishor [3 ,4 ]
Radha, R. [2 ]
Muruganandam, P. [5 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Theoret Phys, BR-01156970 Sao Paulo, SP, Brazil
[2] Govt Coll Women, Dept Phys, Ctr Nonlinear Sci CeNSc, Kumbakonam 612001, India
[3] Univ Otago, Dept Phys, Ctr Quantum Sci, Dunedin 9054, New Zealand
[4] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9054, New Zealand
[5] Bharathidasan Univ, Dept Phys, Tiruchirappalli 620024, India
基金
巴西圣保罗研究基金会;
关键词
SOLITONS;
D O I
10.1103/PhysRevB.105.224315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically explore the possibility of stabilizing the trapless polariton Bose-Einstein condensates (pBECs). Exploiting the variational method, we solve the associated nonlinear, complex Gross-Pitaevskii equation and derive the equation of motion for the amplitude and width of the condensate. These variational results described by ordinary differential equations are rewritten to perform a linear stability analysis to generate a stability window in the repulsive domain. A set of coupled nonlinear ordinary differential equations obtained through the variational approach are then solved by numerical simulations through the fourth-order Runge-Kutta method, which are further supported by the split-step Crank-Nicholson method, thereby setting the platform for stable pBECs. In particular, we generate a window containing system parameters in the g(1) - gamma(eff) space within which the system can admit stable condensates. The highlight of the results is that one observes beating effects in the real time evolution of the condensates with attractive interactions much similar to multicomponent BECs, and their periodicity can be varied by manipulating linear and nonlinear loss/gain terms. For repulsive condensates, one notices the stretching of the density.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Stability and instability properties of rotating Bose-Einstein condensates
    Arbunich, Jack
    Nenciu, Irina
    Sparber, Christof
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (06) : 1415 - 1432
  • [22] Stability of persistent currents in spinor Bose-Einstein condensates
    Yakimenko, A. I.
    Isaieva, K. O.
    Vilchinskii, S. I.
    Weyrauch, M.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [23] Two-component Bose-Einstein condensates and their stability
    Morise, H
    Tsurumi, T
    Wadati, M
    PHYSICA A, 2000, 281 (1-4): : 432 - 441
  • [24] Stability of repulsive Bose-Einstein condensates in a periodic potential
    Bronski, JC
    Carr, LD
    Deconinck, B
    Kutz, JN
    Promislow, K
    PHYSICAL REVIEW E, 2001, 63 (03):
  • [25] Vortex stability in Bose-Einstein condensates in the presence of disorder
    Pons, Marisa
    Sanpera, Anna
    PHYSICAL REVIEW A, 2017, 95 (03)
  • [26] Stability of self-gravitating Bose-Einstein condensates
    Schroven, Kris
    List, Meike
    Laemmerzahl, Claus
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [27] Stability of quadruply charged vortices in Bose-Einstein condensates
    Kawaguchi, Y
    Ohmi, T
    LASER PHYSICS, 2004, 14 (04) : 575 - 580
  • [28] Study of stability of relativistic ideal Bose-Einstein condensates
    Briscese, F.
    Grether, M.
    de Llano, M.
    Baker, George A., Jr.
    PHYSICS LETTERS A, 2012, 376 (45) : 2911 - 2916
  • [29] STABILITY OF BOSE-EINSTEIN CONDENSATES IN A LORENTZ VIOLATING SCENARIO
    Castellanos, E.
    Camacho, A.
    MODERN PHYSICS LETTERS A, 2010, 25 (06) : 459 - 469
  • [30] Diode for Bose-Einstein condensates
    Larson, J.
    EPL, 2011, 96 (05)