NON-PARAMETRIC FUNCTIONAL METHODS FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
|
作者
Zullo, A. [1 ]
Fauvel, M. [1 ]
Ferraty, F.
Goulard, M. [1 ]
Vieu, P.
机构
[1] INRA, Lab DYNAFOR, UMR 1201, F-31931 Toulouse, France
关键词
Curse of dimensionality; hyperspectral image classification; nonparametric functional model; statistical method; SPATIAL CLASSIFICATION;
D O I
10.1109/IGARSS.2014.6947217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this article is to assess the relevance of a statistical method for hyperspectral image classification. We focus on the implementation of a functional method whose main objective is to consider each hyperspectrum as a continuous curve in order to predict its associated class. The implemented functional nonparametric discrimination method is a recently developed technique whose performance are greatly dependent on the choice of a "proximity measure". Behavior in practice of this method has been compared with three more standard others on two sets of hyperspectral data with supervised classification for 50 independent sets using a classification error rate criterion. Experimental results show that this method provides an interesting alternative to conventional methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A novel non-parametric weighted feature extraction method for classification of hyperspectral image with limited training samples
    Yang, Jinn-Min
    Yu, Pao-Ta
    Kuo, Bor-Chen
    Huang, Hsiao-Yun
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1552 - 1555
  • [2] Non-Parametric Calibration for Classification
    Wenger, Jonathan
    Kjellstroem, Hedvig
    Triebel, Rudolph
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [3] FETAL HEART RATE CLASSIFICATION BY NON-PARAMETRIC BAYESIAN METHODS
    Yu, Kezi
    Quirk, J. Gerald
    Djuric, Petar M.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 876 - 880
  • [4] Optimal parameters selection for non-parametric image registration methods
    Larrey-Ruiz, Jorge
    Morales-Sanchez, Juan
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2006, 4179 : 564 - 575
  • [5] Non-parametric regression methods
    Ince H.
    [J]. Computational Management Science, 2006, 3 (2) : 161 - 174
  • [6] Parametric and non-parametric methods for linear extraction
    Bascle, B
    Gao, X
    Ramesh, V
    [J]. STATISTICAL METHODS IN VIDEO PROCESSING, 2004, 3247 : 175 - 186
  • [7] Non-parametric time series classification
    Lenser, S
    Veloso, M
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3918 - 3923
  • [8] Non-parametric classification of mamographic lesions
    Bonta, DV
    Giger, ML
    Lan, L
    [J]. RADIOLOGY, 2002, 225 : 498 - 498
  • [9] Supervised parametric and non-parametric classification of chromosome images
    Sampat, MP
    Bovik, AC
    Aggarwal, JK
    Castleman, KR
    [J]. PATTERN RECOGNITION, 2005, 38 (08) : 1209 - 1223
  • [10] NON-PARAMETRIC NATURAL IMAGE MATTING
    Sarim, Muhammad
    Hilton, Adrian
    Guillemaut, Jean-Yves
    Kim, Hansung
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3213 - 3216