Supervised parametric and non-parametric classification of chromosome images

被引:38
|
作者
Sampat, MP
Bovik, AC
Aggarwal, JK [1 ]
Castleman, KR
机构
[1] Univ Texas, Comp & Vis Res Ctr, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas, Lab Image & Video Engn, Dept Biomed Engn, Austin, TX 78712 USA
[3] Univ Texas, Lab Image & Video Engn, Dept Elect & Comp Engn, Austin, TX 78712 USA
[4] LLC, Adv Digital Imaging Res, League City, TX 77573 USA
关键词
M-FISH; nearest neighbor; k-nearest neighbor; maximum likelihood estimation; karyotyping;
D O I
10.1016/j.patcog.2004.09.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a fully automatic chromosome classification algorithm for Multiplex Fluorescence In Situ Hybridization (M-FISH) images using supervised parametric and non-parametric techniques. M-FISH is a recently developed chromosome imaging method in which each chromosome is labelled with 5 fluors (dyes) and a DNA stain. The classification problem is modelled as a 25-class 6-feature pixel-by-pixel classification task. The 25 classes are the 24 types of human chromosomes and the background, while the six features correspond to the brightness of the dyes at each pixel. Maximum likelihood estimation, nearest neighbor and k-nearest neighbor methods are implemented for the classification. The highest classification accuracy is achieved with the k-nearest neighbor method and k = 7 is an optimal value for this classification task. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1209 / 1223
页数:15
相关论文
共 50 条
  • [1] Non-Parametric Calibration for Classification
    Wenger, Jonathan
    Kjellstroem, Hedvig
    Triebel, Rudolph
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [2] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [3] Non-Parametric Context-Based Object Classification in Images
    Roncevic, Toma
    Braovic, Maja
    Stipanicev, Darko
    INFORMATION TECHNOLOGY AND CONTROL, 2017, 46 (01): : 86 - 99
  • [4] An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images
    Serpico, SB
    Bruzzone, L
    Roli, F
    PATTERN RECOGNITION LETTERS, 1996, 17 (13) : 1331 - 1341
  • [5] Experimental comparison of parametric, non-parametric, and hybrid multigroup classification
    Pai, Dinesh R.
    Lawrence, Kenneth D.
    Klimberg, Ronald K.
    Lawrence, Sheila M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8593 - 8603
  • [6] Non-parametric time series classification
    Lenser, S
    Veloso, M
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3918 - 3923
  • [7] Non-parametric classification of mamographic lesions
    Bonta, DV
    Giger, ML
    Lan, L
    RADIOLOGY, 2002, 225 : 498 - 498
  • [8] A Non-Parametric Texture Descriptor for Polarimetric SAR Data with Applications to Supervised Classification
    Jaeger, Marc
    Reigber, Andreas
    Hellwich, Olaf
    10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [9] On Parametric (and Non-Parametric) Variation
    Smith, Neil
    Law, Ann
    BIOLINGUISTICS, 2009, 3 (04): : 332 - 343
  • [10] PARAMETRIC AND NON-PARAMETRIC MINIMA
    ANZELLOTTI, G
    MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) : 103 - 115