Error estimates of Crank-Nicolson Galerkin method for the time-dependent Maxwell-Schrodinger equations under the Lorentz gauge

被引:4
|
作者
Ma, Chupeng [1 ,2 ]
Cao, Liqun [1 ,2 ]
Lin, Yanping [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
error estimates; Crank-Nicolson; Galerkin method; Maxwell-Schrodinger; GINZBURG-LANDAU EQUATIONS; MODIFIED WAVE-OPERATORS; GLOBAL EXISTENCE; COUPLED MAXWELL; SIMULATION; EFFICIENT; INTENSE; MODEL;
D O I
10.1093/imanum/drx060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a numerical method and its convergence for solving the time-dependent Maxwell-Schrodinger equations under the Lorentz gauge. An alternating Crank-Nicolson finite-element method for solving the problem is presented and an optimal error estimate for the numerical algorithm is obtained by a mathematical inductive method. Numerical experiments are then carried out to confirm the theoretical results.
引用
收藏
页码:2074 / 2104
页数:31
相关论文
共 50 条
  • [1] A CRANK-NICOLSON FINITE ELEMENT METHOD AND THE OPTIMAL ERROR ESTIMATES FOR THE MODIFIED TIME-DEPENDENT MAXWELL-SCHRODINGER EQUATIONS
    Ma, Chupeng
    Cao, Liqun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 369 - 396
  • [2] The Crank-Nicolson Galerkin method and convergence for the time-dependent Maxwell-Dirac system under the Lorentz gauge
    Fu, Yaoyao
    Cao, Liqun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407
  • [3] The Crank–Nicolson Galerkin method and convergence for the time-dependent Maxwell–Dirac system under the Lorentz gauge
    Fu, Yaoyao
    Cao, Liqun
    [J]. Journal of Computational and Applied Mathematics, 2022, 407
  • [4] OPTIMAL ERROR ESTIMATES OF LINEARIZED CRANK-NICOLSON GALERKIN FEMs FOR THE TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS IN SUPERCONDUCTIVITY
    Gao, Huadong
    Li, Buyang
    Sun, Weiwei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1183 - 1202
  • [5] UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF A CRANK-NICOLSON GALERKIN METHOD FOR THE NONLINEAR THERMISTOR EQUATIONS
    Li, Buyang
    Gao, Huadong
    Sun, Weiwei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 933 - 954
  • [6] A posteriori error estimates for the Crank-Nicolson method for parabolic equations
    Akrivis, G
    Makridakis, C
    Nochetto, RH
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 511 - 531
  • [7] A POSTERIORI ERROR ANALYSIS FOR THE CRANK-NICOLSON METHOD FOR LINEAR SCHRODINGER EQUATIONS
    Kyza, Irene
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04): : 761 - 778
  • [8] Crank-Nicolson Galerkin approximations to nonlinear Schrodinger equations with rough potentials
    Henning, Patrick
    Peterseim, Daniel
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (11): : 2147 - 2184
  • [9] Optimal Error Estimates of a Linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki Equations
    Li, Dongfang
    Cao, Waixiang
    Zhang, Chengjian
    Zhang, Zhimin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (03) : 838 - 854
  • [10] Two-Grid Crank-Nicolson FiniteVolume Element Method for the Time-Dependent Schrodinger Equation
    Chen, Chuanjun
    Lou, Yuzhi
    Zhang, Tong
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (06) : 1357 - 1380