Optimal Error Estimates of a Linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki Equations

被引:12
|
作者
Li, Dongfang [1 ,2 ]
Cao, Waixiang [3 ]
Zhang, Chengjian [1 ,2 ]
Zhang, Zhimin [4 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[5] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Unconditionally optimal error estimates; linearized Galerkin finite element method; Kuramoto-Tsuzuki equation; high-dimensional nonlinear problems; DIFFERENCE SCHEME; L1-GALERKIN FEMS; CONVERGENCE; STABILITY;
D O I
10.4208/cicp.OA-2018-0208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with unconditionally optimal error estimate of the linearized Galerkin finite element method for solving the two-dimensional and three-dimensional Kuramoto-Tsuzuki equations, while the classical analysis for these nonlinear problems always requires certain time-step restrictions dependent on the spatial mesh size. The key to our analysis is to obtain the boundedness of the numerical approximation in the maximum norm, by using error estimates in certain norms in the different time level, the corresponding Sobolev embedding theorem, and the inverse inequality. Numerical examples in both 2D and 3D nonlinear problems are given to confirm our theoretical results.
引用
收藏
页码:838 / 854
页数:17
相关论文
共 50 条