Magnetohydrodynamic system;
Magnetic vector potential;
Crank-Nicolson scheme;
Finite element method;
Error estimates;
FINITE-ELEMENT APPROXIMATION;
EQUATIONS;
STATIONARY;
D O I:
10.1016/j.camwa.2023.12.026
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A linearized fully discrete Crank-Nicolson finite element scheme is proposed for solving the three-dimensional incompressible magnetohydrodynamic equations based on a magnetic vector potential formulation, where the magnetic induction is written to a rotation of magnetic vector potential. By using the MINI element and lowest order Nedelec edge element to approximate the velocity field and pressure of fluid and magnetic vector potential, respectively, the numerical solution of magnetic induction can preserve the exactly divergence-free condition in fully discrete level. Error estimates for the velocity field and magnetic vector potential are rigorously analyzed under some reasonable regularity assumptions of exact solution. Finally, numerical results are given to support the theoretical analysis.
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Cao, Waixiang
Zhang, Chengjian
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Huazhong Univ Sci & Technol, Hubei Key Lab Engn & Sci Comp, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Zhang, Chengjian
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USAHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci,NCMIS,LSEC, Acad Math & Syst Sci,Inst Computat Math & Sci Eng, Beijing 100190, Peoples R ChinaChinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci,NCMIS,LSEC, Acad Math & Syst Sci,Inst Computat Math & Sci Eng, Beijing 100190, Peoples R China
Ding, Qianqian
Long, Xiaonian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci,NCMIS,LSEC, Acad Math & Syst Sci,Inst Computat Math & Sci Eng, Beijing 100190, Peoples R ChinaChinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci,NCMIS,LSEC, Acad Math & Syst Sci,Inst Computat Math & Sci Eng, Beijing 100190, Peoples R China
Long, Xiaonian
Mao, Shipeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci,NCMIS,LSEC, Acad Math & Syst Sci,Inst Computat Math & Sci Eng, Beijing 100190, Peoples R ChinaChinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci,NCMIS,LSEC, Acad Math & Syst Sci,Inst Computat Math & Sci Eng, Beijing 100190, Peoples R China