Error estimates of Crank-Nicolson Galerkin method for the time-dependent Maxwell-Schrodinger equations under the Lorentz gauge

被引:4
|
作者
Ma, Chupeng [1 ,2 ]
Cao, Liqun [1 ,2 ]
Lin, Yanping [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
error estimates; Crank-Nicolson; Galerkin method; Maxwell-Schrodinger; GINZBURG-LANDAU EQUATIONS; MODIFIED WAVE-OPERATORS; GLOBAL EXISTENCE; COUPLED MAXWELL; SIMULATION; EFFICIENT; INTENSE; MODEL;
D O I
10.1093/imanum/drx060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a numerical method and its convergence for solving the time-dependent Maxwell-Schrodinger equations under the Lorentz gauge. An alternating Crank-Nicolson finite-element method for solving the problem is presented and an optimal error estimate for the numerical algorithm is obtained by a mathematical inductive method. Numerical experiments are then carried out to confirm the theoretical results.
引用
收藏
页码:2074 / 2104
页数:31
相关论文
共 50 条