SVM incremental learning, adaptation and optimization

被引:0
|
作者
Diehl, CP [1 ]
Cauwenberghs, G [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of machine learning is to identify a model that yields good generalization performance. This involves repeatedly selecting a hypothesis class, searching the hypothesis class by minimizing a given objective function over the model's parameter space, and evaluating the generalization performance of the resulting model. This search can be computationally intensive as training data continuously arrives, or as one needs to tune hyperparameters; in the hypothesis class and the objective function. In this paper, we present a framework for exact incremental learning and adaptation of support vector machine (SVM) classifiers. The approach is general and allows one to learn and unlearn individual or multiple examples, adapt the current SVM to changes in regularization and kernel parameters, and evaluate generalization performance through exact leave-one-out error estimation.
引用
收藏
页码:2685 / 2690
页数:6
相关论文
共 50 条
  • [41] An incremental learning method based on SVM for online sketchy shape recognition
    Sun, ZX
    Zhang, LS
    Tang, EY
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 655 - 659
  • [43] A global Optimization of SVM batch active learning
    Ding, Xiaojian
    Zhao, Yinliang
    Li, Yuancheng
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 500 - 503
  • [44] Multiobjective Multitasking Optimization Based on Incremental Learning
    Lin, Jiabin
    Liu, Hai-Lin
    Xue, Bing
    Zhang, Mengjie
    Gu, Fangqing
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (05) : 824 - 838
  • [45] A Dynamic Optimization Approach for Adaptive Incremental Learning
    Kapp, Marcelo N.
    Sabourin, Robert
    Maupin, Patrick
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2011, 26 (11) : 1101 - 1124
  • [46] Crossover particle swarm optimization with incremental learning
    Chen, Jinyin
    Xu, Haibo
    Lv, Haixia
    [J]. Journal of Information and Computational Science, 2013, 10 (06): : 1759 - 1766
  • [47] AN INCREMENTAL LEARNING STRATEGY FOR SEARCH RESULTS OPTIMIZATION
    Liu, Xiang
    Zheng, Dequan
    Xu, Bing
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 491 - 495
  • [48] Adaptive SVM plus : Learning with Privileged Information for Domain Adaptation
    Sarafianos, Nikolaos
    Vrigkas, Michalis
    Kakadiaris, Ioannis A.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2637 - 2644
  • [49] INCREMENTAL ADAPTATION USING ACTIVE LEARNING FOR ACOUSTIC EMOTION RECOGNITION
    Abdelwahab, Mohammed
    Busso, Carlos
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5160 - 5164
  • [50] Incremental and Decremental SVM for Regression
    Galmeanu, H.
    Sasu, L. M.
    Andonie, R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2016, 11 (06) : 755 - 775