Incremental and Decremental SVM for Regression

被引:5
|
作者
Galmeanu, H. [1 ,2 ]
Sasu, L. M. [1 ,2 ]
Andonie, R. [3 ,4 ]
机构
[1] Siemens Corp Technol, Princeton, NJ 08540 USA
[2] Transilvania Univ Brasov, Fac Math & Informat, Brasov, Romania
[3] Cent Washington Univ, Dept Comp Sci, Ellensburg, WA USA
[4] Transilvania Univ Brasov, Elect & Comp Dept, Brasov, Romania
关键词
support vector machine; incremental and decremental learning; regression; function approximation; FUZZY ARTMAP; ARCHITECTURE;
D O I
10.15837/ijccc.2016.6.2744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Training a support vector machine (SVM) for regression (function approximation) in an incremental/decremental way consists essentially in migrating the input vectors in and out of the support vector set with specific modification of the associated thresholds. We introduce with full details such a method, which allows for defining the exact increments or decrements associated with the thresholds before vector migrations take place. Two delicate issues are especially addressed: the variation of the regularization parameter (for tuning the model performance) and the extreme situations where the support vector set becomes empty. We experimentally compare our method with several regression methods: the multilayer perceptron, two standard SVM implementations, and two models based on adaptive resonance theory.
引用
收藏
页码:755 / 775
页数:21
相关论文
共 50 条
  • [1] Incremental/decremental SVM for function approximation
    Galmeanu, H.
    Andonie, R.
    [J]. OPTIM 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL III, 2008, : 155 - +
  • [2] Implementation Issues of an Incremental and Decremental SVM
    Galmeanu, Honorius
    Andonie, Razvan
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 325 - +
  • [3] Incremental and decremental LS-SVM for function estimation
    Liu, JH
    Cheng, JS
    Chen, JP
    [J]. 8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 1372 - 1375
  • [4] EXACT INCREMENTAL AND DECREMENTAL LEARNING FOR LS-SVM
    Lee, Wei-Han
    Ko, Bong Jun
    Wang, Shiqiang
    Liu, Changchang
    Leung, Kin K.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2334 - 2338
  • [5] Concept Drift Adaptation with Incremental-Decremental SVM
    Galmeanu, Honorius
    Andonie, Razvan
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [6] Towards an incremental SVM for regression
    Carozza, M
    Rampone, S
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 405 - 410
  • [7] A boosted SVM classifier trained by incremental learning and decremental unlearning approach
    Kashef, Rasha
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
  • [8] Online Clustering of Non-stationary Data Using Incremental and Decremental SVM
    Boukharouba, Khaled
    Lecoeuche, Stephane
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 336 - 345
  • [9] A Multi-Class Incremental and Decremental SVM Approach using Adaptive Directed Acyclic Graphs
    Galmeanu, Honorius
    Andonie, Razvan
    [J]. PROCEEDINGS 2009 INTERNATIONAL CONFERENCE ON ADAPTIVE AND INTELLIGENT SYSTEMS, ICAIS 2009, 2009, : 114 - 119
  • [10] DECREMENTAL AND INCREMENTAL VISUAL THRESHOLDS
    SHORT, AD
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1966, 185 (03): : 646 - &