Incremental and Decremental SVM for Regression

被引:5
|
作者
Galmeanu, H. [1 ,2 ]
Sasu, L. M. [1 ,2 ]
Andonie, R. [3 ,4 ]
机构
[1] Siemens Corp Technol, Princeton, NJ 08540 USA
[2] Transilvania Univ Brasov, Fac Math & Informat, Brasov, Romania
[3] Cent Washington Univ, Dept Comp Sci, Ellensburg, WA USA
[4] Transilvania Univ Brasov, Elect & Comp Dept, Brasov, Romania
关键词
support vector machine; incremental and decremental learning; regression; function approximation; FUZZY ARTMAP; ARCHITECTURE;
D O I
10.15837/ijccc.2016.6.2744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Training a support vector machine (SVM) for regression (function approximation) in an incremental/decremental way consists essentially in migrating the input vectors in and out of the support vector set with specific modification of the associated thresholds. We introduce with full details such a method, which allows for defining the exact increments or decrements associated with the thresholds before vector migrations take place. Two delicate issues are especially addressed: the variation of the regularization parameter (for tuning the model performance) and the extreme situations where the support vector set becomes empty. We experimentally compare our method with several regression methods: the multilayer perceptron, two standard SVM implementations, and two models based on adaptive resonance theory.
引用
收藏
页码:755 / 775
页数:21
相关论文
共 50 条
  • [21] Incremental and decremental learning with support vector machine
    Department of Mathematics, Shanghai Jiaotong University, Shanghai 200040, China
    不详
    [J]. Harbin Gongcheng Daxue Xuebao, 2006, SUPPL. (415-421):
  • [22] Incremental and Decremental Optimal Margin Distribution Learning
    Chen, Li-Jun
    Zhang, Teng
    Shi, Xuanhua
    Jin, Hai
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3523 - 3531
  • [23] Multiple Incremental Decremental Learning of Support Vector Machines
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (07): : 1048 - 1059
  • [24] Analysis for incremental and decremental standard support vector machine
    Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China
    不详
    不详
    [J]. Ruan Jian Xue Bao, 2013, 7 (1601-1613):
  • [25] Incremental and decremental learning for linear support vector machines
    Romero, Enrique
    Barrio, Ignacio
    Belanche, Lluis
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 209 - +
  • [26] WESTHEIMER FUNCTIONS FOR INCREMENTAL AND DECREMENTAL VISUAL TIME THRESHOLDS
    EHRENSTEIN, WH
    [J]. PERCEPTION, 1983, 12 (01) : A27 - A27
  • [27] Chromatic discrimination in the presence of incremental and decremental rod pedestals
    Cao, Dingcai
    Zele, Andrew J.
    Pokorny, Joel
    [J]. VISUAL NEUROSCIENCE, 2008, 25 (03) : 399 - 404
  • [28] INCREMENTAL AND DECREMENTAL NONPARAMETRIC DISCRIMINANT ANALYSIS FOR FACE RECOGNITION
    Kumar, Nitin
    Agrawal, Ramesh Kumar
    Jaiswal, Ajay
    [J]. COMPUTING AND INFORMATICS, 2016, 35 (05) : 1231 - 1248
  • [29] One-Pass Learning with Incremental and Decremental Features
    Hou, Chenping
    Zhou, Zhi-Hua
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (11) : 2776 - 2792
  • [30] COLOR SIGNALS FROM INCREMENTAL AND DECREMENTAL LIGHT STIMULI
    WALRAVEN, J
    [J]. VISION RESEARCH, 1977, 17 (01) : 71 - 76