Reflections on Bayesian inference and Markov chain Monte Carlo

被引:4
|
作者
Craiu, Radu, V [1 ]
Gustafson, Paul [2 ]
Rosenthal, Jeffrey S. [1 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[2] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bayesian inference; Markov chain Monte Carlo; CONVERGENCE-RATES; PARALLEL; COMPUTATION; BOUNDS; COMPLEXITY; SAMPLER; MCMC;
D O I
10.1002/cjs.11707
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian inference and Markov chain Monte Carlo methods are vigorous areas of statistical research. Here we reflect on some recent developments and future directions in these fields.
引用
收藏
页码:1213 / 1227
页数:15
相关论文
共 50 条
  • [21] Bayesian generalised ensemble Markov chain Monte Carlo
    Frellsen, Jes
    Winther, Ole
    Ghahramani, Zoubin
    Ferkinghoff-Borg, Jesper
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 408 - 416
  • [22] Bayesian Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant Source on a Continental Scale
    Delle Monache, Luca
    Lundquist, Julie K.
    Kosovic, Branko
    Johannesson, Gardar
    Dyer, Kathleen M.
    Aines, Roger D.
    Chow, Fotini K.
    Belles, Rich D.
    Hanley, William G.
    Larsen, Shawn C.
    Loosmore, Gwen A.
    Nitao, John J.
    Sugiyama, Gayle A.
    Vogt, Philip J.
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (10) : 2600 - 2613
  • [23] Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: recent advances and comparative study
    Jin, Seung-Seop
    Ju, Heekun
    Jung, Hyung-Jo
    [J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2019, 15 (11) : 1548 - 1565
  • [24] Bayesian inference of pit corrosion in prestressing strands using Markov Chain Monte Carlo method
    Lee, Jaebeom
    Jeon, Chi-Ho
    Shim, Chang-Su
    Lee, Young-Joo
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2023, 74
  • [25] Bayesian inference on principal component analysis using reversible jump Markov chain Monte Carlo
    Zhang, ZH
    Chan, KL
    Kwok, JT
    Yeung, DY
    [J]. PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 372 - 377
  • [26] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    [J]. 4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [27] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301
  • [28] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [29] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    [J]. HUMAN HEREDITY, 2015, 80 (03) : 113 - 113
  • [30] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    [J]. SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136